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Abstract  Original Research Article 
 

This paper aims at the derivation of a new operational matrix of fractional integration for Hermite polynomials, in 

order to solve the linear form of fractional differential equations (FDEs) in the sense of spectral tau method. To do 

this, we focus explicitly on the conversion of FDEs into a number of algebraic equations to simplify the problem, 

subject to pre-defined initial conditions. This is achieved by fractional integration through the Riemann-Liouville 

sense. We then apply to the proposed strategy to figure out the simplified problem. In order to show the performance 

of the proposed strategy, we present exact and approximated solutions for a number of examples. 
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INTRODUCTİON  
Fractional differential equations (FDEs) have 

been gainning a significant attention in various aspects 

of science and engineering [1-5]. FDEs are utilised to 

describe the mathematical behavior of typical 

engineering and applied sciences problems. Therefore, a 

critical effort is required to be placed on the solutions of 

FDEs. A number of methods have been proposed to 

solve FDEs [6-10]. It is well-known that many FDEs do 

not have exact solutions which drives researchers to 

exploit the numerical techniques for obtaining 

approximated solutions. A popular technique, called 

spectral method, uses traditional polynomials to 

efficiently obtain approximate solutions. Recently, 

spectral methods have been shown as an attractive 

subject with a continuously growing interest for a high 

volume of real-world problems.  

 

Recently, the derivation of operational matrix 

for diverse types of polynomials was carried out to 

address the initial value problems of FDEs. Existing 

studies attempt to solve either linear or non-linear type 

of FDEs with operational matrix strategy. The 

operational matrix for fractional integration has been 

successfully derived for different types of polynomials. 

Examples of these polynomials are Laguerre [11, 12], 

Chebyshev [13], Legendre [14], Bessel [15], Bernstein 

[16], Fermat [17] and Boubaker [18] polynomials. In 

this study, our main motivation is to establish the 

operational matrix of fractional integration by Hermite 

polynomials with the sense of Riemann-Liouville. 

which is believed to solve multi-order FDEs in a cost-

effective way.  

 

The most significant feature of the proposed 

idea is to reduce the complexity of FDEs. For this 

purpose, we first write the FDEs in integral type. This is 

to construct a set of algebraic equations with the 

operational matrix developed. Depending on the 

number of initial conditions, a specific number of 

algebraic equations are also created. By putting all 

algebraic equations in a matrix form, the problem is 

actually reduced to the solution of an algrebraic 

equation system. In order to test the accuracy and 

performance of the proposed idea, we solved a number 

of representative examples. With the results obtained, 

either exact or approximated solutions are achieved. 

The details about the method and examples are 

provided in the following sections. 
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Preliminaries 

Definition of  Rieman-Liouville Integration  

Rieman-Liouville integration that is represented by   , where              is introduced as [4] 

 

       
 

    
∫               

 

 
                 .                       (2.1) 

If     then  

                                                                                                                                         (2.2)     

 

The following properties are hold by Rieman-Liouville operator: [22] 

                (commutative property) 

                 (semi-group property) 

         
      

        
     (power function) 

                                                       (linearity) 

 

 

Method of Operational Matrix 

Hermite Polynomials  

Hermite polynomials are defined on        with this analytical formula: [20] 
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⌋ denotes the smallest number greatest than  

 

 
  

 

Hermite polynomials are orthogonal since [23] 
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Hermite Operational Matrix Method of Solution 

Let Hermite operational matrix is shown as    with Rieman-Liouville integration and let      is the Hermite 

vector, then it will be 

                                                                                                                                         (4.1) 

Here        is the             matrix and matrix elements can be found as below: 
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Firstly, for finding the elements of       matrix Rieman-Liouville integration of Hermite polynomials is found, it is  
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Then   if we think   
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   ,                                              (4.4) 

 

    can be obtained as below 
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By using  (4.3) and (4.4) we obtain 
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The (4.6) equation is  

                     ∑ ∑ ∑
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where  

                            ∑ ∑
 

    √ 

⌊  ⁄ ⌋

   

                                      

                        

⌊  ⁄ ⌋

   
.            (4.8) 

 

And the fractional differential equation model we will consider is  

                                 ∑   
 
                        ,                                            (4.9) 

with initial conditions 

                                                                                                                                    

where                     are real constants  and            and                  and      is source 

function. Rieman-Liouville integral of order    is applied to fractional differential equation 
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The matrix forms of       and      will be  
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                                             (4.13)    
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where the vector                   can be calculated whereas                   is unkown vector. 

 

We then appply Rieman-Liouville integral of order   and (  –    of the approximate solution and we obtain  

                                                                                                          (4.15)     

and   

                                                               ,                        (4.16)        

 

The residual       will be given as [14,19] 
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 with Tau method, by applying  (Cite ref ) 

 

                 〈            〉  ∫            
 

  
                       .          (4.18) 

 

      linear algebraic equations are generated. From the conditions we have   conditions ,by thinking both of 

them together  we will solve     equations with Tau method. [24] The coefficients              will be found, by 

putting them into the equation form [25] such as  

                                                    ∑            
               

      

Then approximate solutions will be found.     

 

Numerical Examples 
Example 1. We first consider the following equation [26] 

                                                    
     

      
              .                        (5.1)  

 

where the exact solution is given as 
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Our solution is applied for N=2 and the approximate solution is written as   

 

      ∑            
        and      ∑            

        

 

We also obtain 

                                          [
                  
                  

                   
]  

 

The following algebraic equations are extracted, one from the initial condition: 

 

                                  

                                  

                                              

 

The solution of this algebraic equations is 

                    
Finally, our proposed method achieves the exact solution by: 

              [

     
     

     
]     

 

Example 2. The second example is [12] 

              
 

 ⁄                
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,                                            (5.2)     

The exact solution is given as 

 

        
 

We also obtain the following 
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]  

 

The required algebraic equations are found, three of which come from the initial conditions: 

 

                                           

                                                                  

                                                                                                    

                                                                                                  
 

Now after applying our technique for     we get  

 

                         
 

 

And the approximate solution is the same as exact solution like  

           
 

Example 3. The third example is [27] 

                            
            

       
                                    (5.3)     

The exact solution is given as: 
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We obtain the following fractional integrations for N = 3, 

      [
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      [

                        
                        

                          
                           

] 

 

The required algebraic equations are composed, two of which come from initial conditions. 

                                            

                                            

         

           

 

Solving these algrebraic equations, the coefficients are obtained as 

                                              
 

Then, the approximated solutiın for this example is found as 

                      [

     

     
     

     

]                 

 

We see from the approximated solution that it converges to the exact solution very closely, which is presented in 

figure 1 below.  

 
Fig-1:  The results of the exact and approximated solutions. 

 

CONCLUSİONS 
This paper presented an explicit derivation of 

operational matrix of fractional integration through 

Hermite polynomials. It relies basically on solutions of 

fractional differential equations with Riemann-

Liouville. We considered the linear type of fractional 

differential equations with initial conditions. The basic 

mechanism is based on the conversion of FDEs into a 

set of algebraic equations for simplicity. We proved the 

performance of the proposed mechanism with a number 

of numerical examples, presenting exact and 

approximated solutions with high accuracy.  
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