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Abstract  Review Article 
 

In this paper, generalized inverted exponential distribution is considered for Bayesian analysis. The expressions for 

Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-

Bayyati’s loss functions by using quasi and gamma priors. 
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INTRODUCTION 
Abouammoh and Alshingiti [1] introduced a 

generalized version of inverted exponential distribution. 

They obtained the statistical and reliability properties of 

this distribution. The probability density function of 

generalized inverted exponential distribution is given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and 

equating to zero, we get the maximum likelihood 

estimator of θ which is given as 
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Bayesian Method of Estimation 

The Bayesian inference procedures have been 

developed generally under squared error loss function 
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The Bayes estimator under the above loss 

function, say, s


 is the posterior mean, i.e, 
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Zellner [2], Basu and Ebrahimi [3] have 

recognized that the inappropriateness of using 

symmetric loss functions. Norstrom [4] introduced 

precautionary loss function is given as 
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The Bayes estimator under this loss function is 

denoted by P


 and is obtained as  
1
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Calabria and Pulcini [5] points out that a useful 

asymmetric loss function is the entropy loss 
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  and whose minimum occurs at 
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Also, the loss function  L   has been used in 

Dey et al. [6] and Dey and Liu [7], in the original form 

having 1p .  Thus  L   can written be as 

 

    1eL b log ; b>0.                  (9) 

 

 

The Bayes estimator under entropy loss 

function is denoted by E


 and is obtained by solving 

the following equation 
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Wasan [8] proposed the K-loss function which is given 

as 
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Under K-loss function the Bayes estimator of θ is 

denoted by K


 and is obtained as 
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Al-Bayyati [9] introduced a new loss function which is 

given as 
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Under Al-Bayyati’s loss function the Bayes estimator of 

θ is denoted by Al


 and is obtained as 
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Let us consider two prior distributions of θ to obtain the 

Bayes estimators. 

(i) Quasi-prior: For the situation where we have no 

prior information about the parameter θ, we may use the 

quasi density as given by 
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(15) where d = 0 leads to a diffuse prior and d = 1, a 

non-informative prior. 

 

(ii) Gamma prior: Generally, the gamma density is used 

as prior distribution of the parameter θ given by 
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Posterior Density under  1g   

The posterior density of θ under  1g  , on using (2), is 

given by 
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Theorem 1. On using (17), we have 
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Proof.  By definition, 

   c cE f x d      
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From equation (18), for 1c  , we have 
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From equation (18), for 2c  , we have 
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From equation (18), for 1c   , we have 
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From equation (18), for 1c c  , we have 
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Bayes Estimators under  1g    

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes out to be 
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Posterior Density under  2g     

Under  2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 
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Proof.  By definition, 
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From equation (29), for 1c  , we have 
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From equation (29), for 2c  , we have 
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From equation (29), for 1c   , we have 
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From equation (29), for 1c c  , we have 
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Bayes Estimators under  2g    

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes out to be 
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CONCLUSION 
In this paper, we have obtained a number of 

estimators of parameter of generalized inverted 

exponential distribution. In equation (4) we have 

obtained the maximum likelihood estimator of the 

parameter. In equation (23), (24), (25), (26) and (27) we 

have obtained the Bayes estimators under different loss 

functions using quasi prior. In equation (34), (35), (36), 

(37) and (38) we have obtained the Bayes estimators 

under different loss functions using gamma prior. In the 

above equation, it is clear that the Bayes estimators 

depend upon the parameters of the prior distribution. 

We therefore recommend that the estimator’s choice 

lies according to the value of the prior distribution 

which in turn depends on the situation at hand. 
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