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Abstract | Review Article

In this paper, generalized inverted exponential distribution is considered for Bayesian analysis. The expressions for
Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-
Bayyati’s loss functions by using quasi and gamma priors.
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INTRODUCTION this distribution. The probability density function of

eneralized inverted exponential distribution is given b
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generalized version of inverted exponential distribution. f(x;6)= 20x%e" ) [1_67(/%)] ;x>0 ()
They obtained the statistical and reliability properties of

The joint density function or likelihood function of (1) is given by
f(x;0)=(20) (H x; 2e %) jexp {(9—1)Zlog [1_e-<i/xi>ﬂ @
i=1 i=1

The log likelihood function is given by

n n
log f (x;0)=nlog(A6)+log (H xi‘ze‘“/xi)j+(¢9—l)ZIog [1_6—(2/&)} 3)
i=1 i=1
Differentiating (3) with respect to 6 and The Bayes estimator under the above loss
equating to zero, we get the maximum likelihood A
estimator of © which is given as function, say, @s is the posterior mean, i.e,
-1 A
; n - Os =E(6 6
f=n ZIOg[l—e_wxi)] , (4) s (9). (6)
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Zellner [2], Basu and Ebrahimi [3] have
recognized that the inappropriateness of using
symmetric loss functions. Norstrom [4] introduced
precautionary loss function is given as

Bayesian Method of Estimation
The Bayesian inference procedures have been
developed generally under squared error loss function
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The Bayes estimator under this loss function is

denoted by g’p and is obtained as ¢, :[E(gzﬂ%. (8)

Calabria and Pulcini [5] points out that a useful
asymmetric loss function is the entropy loss

L(5)oc[5°—p log, (5)-1]

where 6 =—, and whose minimum occurs at

D>

0 = 6. Also, the loss function L (&) has been used in
Dey et al. [6] and Dey and Liu [7], in the original form
having p=1. Thus L (&) can written be as

)=b[5-log, (5)-1]; b>0. )

The Bayes estimator under entropy loss

function is denoted by @& and is obtained by solving
the following equation

-1
~ 1
Oe=|E| = . (10)
{ (Hﬂ
Wasan [8] proposed the K-loss function which is given
as

N 2

) [e_ej

L(0,0j=A—. (11)
00

Under K-loss function the Bayes estimator of 0 is

denoted by @« and is obtained as

SE A

Al-Bayyati [9] introduced a new loss function which is
given as

2
L(9,9)=H° (9—9) . (13)

Under Al-Bayyati’s loss function the Bayes estimator of

0 is denoted by @ al and is obtained as
R E 90+l
bu—E)
E(¢)

Let us consider two prior distributions of 6 to obtain the
Bayes estimators.

(i) Quasi-prior: For the situation where we have no
prior information about the parameter 6, we may use the
quasi density as given by

0(0)=— 100,420,

(14)

(15) where d = 0 leads to a diffuse prior and d = 1, a
non-informative prior.

(if) Gamma prior: Generally, the gamma density is used
as prior distribution of the parameter 6 given by

9.(0)= Ff:t’)

Posterior Density under 0, ((9)

e - 6> 0. (16)

The posterior density of 0 under g, (6), on using (2), is
given by

[ [E[X'Ze o Jex'{ o-1 2'09 [1-e¥] }ed}

f(0/x)=

i=1

o" 9 e

H(w)”[foe‘““”]exp[ DY log[1-e wﬂgd}d@
—eiZng |:1_e*(l/xi )J
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o —Gznllog[l—e*(’l/xi )]_1
i—1
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n _1\"-d+1
(Z log [1— ef(z/xi)} J 792")0@,[14(*/*0]4
o™

= d o 17
F(n—d +1)

Theorem 1. On using (17), we have

e LRI I

=1
Proof. By definition,

E(6°) :_[Hcf (6/x)d6
N _\n-d+1
[Z log [1— e—(z/xi)} j . 79%09[1797%)}_1

i=1
_ 0(n—d+c) = do
r(n—d+1) Jore

(Zlog [1—e‘“/xi)}_ J I(n—-d+c+1)
I'(n—-d+1) (Zlog[ o } 1}

T Bl T )

=1

From equation (18), for ¢ =1, we have

E(6)=(n-d +1)(zn“log [1—e‘(’1/xi)]_1J_l. (19)

i=1

From equation (18), for ¢ = 2, we have
472
E(6%)=[(n—d+2)(n- d+1]{2|og[ —e ] } . (20)

From equation (18), for ¢ =—1, we have
1 19 -
E (—j = [1—e‘w Xi)} . 1)
0) (n-d)z

From equation (18), for ¢ =C+1, we have

. n-d+c+2) R
E(9 1) ((n—d+1) LZIog[l g (/% )} J . 22)

=1

Bayes Estimators under §; (9)
From equation (6), on using (19), the Bayes estimator of 6 under squared error loss function is given by
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n -\t
0s =(n—d +l)[2|og[l—ewxi)] j : (23)
i=1

From equation (8), on using (20), the Bayes estimator of 6 under precautionary loss function is obtained as
A 1 n -1 -
Or =[(n—d+2)(n-d+1)] (Zlog [1—e*(’1/xi)] J . (24)
i=1
From equation (10), on using (21), the Bayes estimator of 6 under entropy loss function is given by
A n -1 -
Oc :(n—d)(ZIog[l—e‘Wx‘)] ] : (25)
i=1
From equation (12), on using (19) and (21), the Bayes estimator of 6 under K-loss function is given by
A 1 n -0\t
O« :[(n—d +1)(n—d)]2£2Iog [l—e‘wxi)] ] . (26)
i=1

From equation (14), on using (18) and (22), the Bayes estimator of 6 under Al-Bayyati’s loss function comes out to be

n -\
On =(n—d +c+1)(2|og[1—e‘wxi)] ] . @7)
i=1

Posterior Density under J, (9)

Under g, (9) , the posterior density of 0, using equation (2), is obtained as

{(19)” [11[ xizewx‘)jexp {(0 1) .Z:: log [1— e (%) ﬂl_'f;)galeﬁe}

i=1

F(6/x)=
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]?emal [ﬁ+;log[1 e ] ]9
e
0

déo
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_| _o(4%)
0n+a_1 . [ﬁ+izlllog[l e } ]9

I'(n+ a)/[ﬂ + Zl: log [1— e(ﬂ/xi)}l] b
(ﬂ + Zn: log [1—9-(ﬂ/xa)JlJn+a

r'(n+a)

N a
] (/%)
et [ﬂJriZ:l:log[l e } }9

(28)
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Theorem 2. On using (28), we have

E(@C):—F(Mmc)(mimg [1—e“/xi>]lJ . (29)

r'(n+a)

Proof. By definition,
E(6°) :jeCf (6/x)d6

n+a

{ﬂ + Zn: log [l— e*(/i/xi ) :|‘1J ) _[ﬂJrzn:IOg[l_e(g/xi)T]H

— 0n+a+c—l i=1 dg
I'(n+a) '([ ¢
. _\+a
+>log[1-e %)
B ['B ; g[ } y I(n+a+c)
- r'(n+a)

[ﬂ + Zn: log [1— e—(ﬁ/xi)}_lJmmc
_In+axc) (ﬂ+znjlog [l—e“/xi)f]_c.

I'(n+a)
From equation (29), for ¢ =1, we have

E(0)=(n+a)[ﬂ+ilog [1_9(%)]1] . (30)

i=1

From equation (29), for ¢ = 2, we have
n -1 -2
E(QZ) = I:(n +0{—|—l)(n +0!):|(ﬂ+2|og |:1_e*(l/><i)j| J . (31)
i=1

From equation (29), for ¢ =—1, we have
1 1 0 T
E[=|=————| g+ log|1-e ") . 32
[0) (n+a—1)(ﬂ ; g[ } 52

From equation (29), for ¢ =C+1, we have

_1\—(c+D)
ey L(n+a+c+l) \ ]
E(6°)= Tt a) (ﬁ+§log[l e ] | 33)

Bayes Estimators under g, (&)
From equation (6), on using (30), the Bayes estimator of 6 under squared error loss function is given by

n -\t
95=(n+a){ﬂ+ZIog[1—eWX')] ] . (34)
i=1
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From equation (8), on using (31), the Bayes estimator of 6 under precautionary loss function is obtained as

-1 -1

Or =[(n+a+1)(n+a)]% ﬂ+_znllog[1—e’wxi)] : (35)

From equation (10), on using (32), the Bayes estimator of 8 under entropy loss function is given by

Oc =(n+a+1) ,6’+anlog [l—e’wx‘)]
i=1

-1

(36)

From equation (12), on using (30) and (32), the Bayes estimator of 6 under K-loss function is given by

A

_1\1

Ok :[(n+a)(n+a—1)]% ,B+Zn“log[1—e‘(ﬂ/xi)} . (37)

From equation (14), on using (29) and (33), the Bayes estimator of 6 under Al-Bayyati’s loss function comes out to be

éAl :(n+a+c) ﬂ+zn:|0g |:l_e—(/1/xi)}
i=1

CONCLUSION

In this paper, we have obtained a number of
estimators of parameter of generalized inverted
exponential distribution. In equation (4) we have
obtained the maximum likelihood estimator of the
parameter. In equation (23), (24), (25), (26) and (27) we
have obtained the Bayes estimators under different loss
functions using quasi prior. In equation (34), (35), (36),
(37) and (38) we have obtained the Bayes estimators
under different loss functions using gamma prior. In the
above equation, it is clear that the Bayes estimators
depend upon the parameters of the prior distribution.
We therefore recommend that the estimator’s choice
lies according to the value of the prior distribution
which in turn depends on the situation at hand.
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