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Abstract  Review Article 
 

In this paper, we have studied anisotropic and homogeneous Bianchi type V universe filled with perfect fluid in the 

framework of Lyra’s geometry. The solutions for field equations of cosmological models are obtained in Lyra’s 

geometry by using two specific cases: firstly by taking the expansion scalar in the model is proportional to the shear 

scalar as and secondly by using the average scale factor as hybrid expansion form (combination of the power law and 

exponential form).  Also, some Physical and Geometrical parameters are discussed in details. 
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INTRODUCTION 
In the frame work of general relativity, the 

acceleration  in the expansion of the universe during 

recent cosmological times, first indicated by supernova 

observations [1] and also supported by the astrophysical 

data obtain from WMAP indicates the existence of an 

exotic fluid with negative pressure, which constitutes 

about the 70 percent of the total energy of the Universe.  

 

Dark energy is a very useful concept since it 

encodes all our ignorance on the acceleration of the 

universe in a single cosmic component. Furthermore, 

Dark energy can also be used as an effective description 

of other mechanisms of the acceleration of the Universe 

[2].Several Candidates to present dark energy have been 

suggested with observations, Quintessence [3], 

Phantom [4], Brane-world Models [5], Pure Chaplygin 

gas model [6], Generalised Chaplygin Gas  (GCG) 

model [7], modified Chaplygin Gas (MCG) model [8] 

and many others. Most recently, a new dark energy 

model, dubbed agegraphic darkenergy has been 

propose, which takes into account the Heisenberg 

Uncertainty relation of quantum mechanics together 

with the gravitational effect in general relativity. 

Because the holographic energy density belongs to 

adynamical cosmological constant, we need a 

dynamical frame to accommodate it instead of general 

relativity. Singh and Chaubey [9] have studied 

interacting dark energy in Bianchi type I space-time. 

The viscous dark tachyon cosmology in interacting and 

non-interacting cases in non-flat FRW Universe was 

studied by Setare et al. [10]. Two-Fluid Cosmological 

Models in Bianchi Type-IIIand V Space-Time has been 

investigated by Adhav et al. [11, 12], Bianchi type-VI0 

model with a two-fluid source has been investigated by 

Coley et al. [13]. Pant et al. [14] examined two fluid 

cosmological models using Bianchi type-II space-time. 

Two fluid Bianchi type-I models are studied by Oli 

[15]. Amirhashchi et al.  [16, 17] have studied an 

interacting and non-interacting two-fluid scenario for 

dark energy models in FRW universe. Two-Fluid 

Cosmological Modelsin Bianchi Type-V Space-Time in 

Higher Dimensions examined by Mete et al. [18]. 

 

Several alternative theories of gravitation have 

been extensively discussed by many authors, to modify 

Einstein’s general theory of relativity by incorporating 

certain desired features which are lacking in the original 

theory. One of the most intriguing modifications of 

general relativity is proposed by Weyl [19], invented to 

unify gravitation and electromagnetism by means of 

fundamental changes in Riemannian geometry. 

Unfortunately the Weyl theory suffers from non 

integrability of length which is physically unacceptable. 

However being interesting from mathematical point of 

view, it may still have the germs of a future fruitful 

theory. Later, Lyra [20] modified Riemannian geometry 

and removed non integrability of length transfer by 

introducing a gauge function into the structure-less 
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manifold as a result of which a displacement field arises 

naturally. Subsequently, Sen et al.  [21, 22] proposed a 

new scalar tensor theory of gravitation. They 

constructed an analog of the Einstein Field Equation 

based on Lyra’s geometry. Halford [23, 24] showed that 

the scalar-tensor treatment based on Lyra’s geometry 

predicts some effects within observational limitsas in 

Einstein’s theory. Several authors Sri Ram and Singh 

[25] have obtained exact solutions of the field equations 

in vacuum and in the presence of stiff-matter for 

anisotropic Bianchi type V cosmological models in the 

normal gauge with a time-dependent displacement 

vector field. Singh [26] considered flat FRW model in 

Lyra’s geometry by using varying adiabatic equation of 

state and solved the field equations for the early phases 

of evolution of universe. Pradhan and Vishwakarma 

[27] have investigated a class of LRS Bianchi type I 

models in the cosmological theory based on Lyra’s 

geometry by considering a time-dependent 

displacement field for constant deceleration parameter 

of the Universe. Rahaman et al. [28] have obtained 

exact solutions for a spatially homogeneous and LRS 

Bianchi type-I model with constant deceleration 

parameter in Lyra’s geometry. Kumar and Singh [29] 

have presented Bianchi type-I models in Lyra’s 

geometry. Recently, Singh et al. [30] have obtained a 

new class of Bianchi type-I cosmological models in 

Lyra’s geometry. Ram et al. [31] have obtained exact 

solutions for anisotropic Bianchi type V perfect fluid 

cosmological models in Lyra’s geometry. Very 

recently, Chaubey [32] has obtained exact solutions for 

Kantowski-Sachs cosmological model in Lyra’s 

geometry.   

 

2. Model and basic equations 

The diagonal form of the Bianchi type V metric is given by 

][ 222222222 dzCdyBedxAdtds mx 
                                 

(1) 

 

Where the metric functions CBA ,, are 

functions of cosmic time t and m is a constant. A 

Bianchi type V model is a natural generalization of the 

open FRW model which eventually becomes isotropic. 

This model describes an anisotropic space-time and 

generates particular interest among physicists.  

 

We first write some kinematical parameters of 

the metric such as the expressions for the average scale 

factor, volume scale factor, generalized Hubble’s 

parameter, expansion scalar, the shear scalar and mean 

anisotropy parameter. 

 

The average scale factor a of the Bianchi type V model 

(1) is defined as 

  3
1

ABCa                  (2) 

 

The special volume V is given by 

ABCaV  3 .               (3) 

 

We define the generalized Hubble’s parameter H as 

 321
3

1
HHHH               (4) 

 

Where AAH 1 , BBH 2 , CCH 1 are the 

directional Hubble’s parameters in the directions of

yx, and z respectively. 

 

A dot denotes differentiation with respect to cosmic 

time t . 

 

From equations (2)-(4), we obtain 
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Let us introduce the dynamical scalars such as 

the expansion , the shear scalar  2 and the mean 

anisotropy parameter mA as usual 
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Where  1,0,0,0u is the matter 4-velocity vector. 

)3,2,1.(   HHH and 
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3. Field equations and their solutions 

The field equations in normal gauge for Lyra’s geometry are  




  GTgRgR 8
2
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2
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2

1
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
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


                                (10) 

 

Where  is the displacement vector defined as 

  t ,0,0,0 ,and T is the energy momentum 

tensor of the matter. 

 

The energy momentum tensor T for a perfect fluid 

has the form 

    pguupT   .                     

(11) 

 

where  is the energy density of the fluid, p is the 

pressure, u is the velocity vector satisfying .1
uu  

 

In view of (11) for the Bianchi type V space-time (1), 

the field equation (10) lead to  
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We have assumed 18 G in proper unit. 

 

The energy conservation equation 0; 
T takes the form 
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For any physically relevant model, Hubble 

parameter (which provides the volumetric expansion 

rate of the Universe) and deceleration parameter (DP) 

(which tells whether the Universe exhibits accelerating 

volumetric expansion or not) are the most important 

observational quantities in cosmology. During 1960s 

and 1970s, red-shift magnitude test drew very 

categorical conclusions.  

 

The DP lies between 0 and 1, thus it was 

claimed that the Universe is decelerating [33]. Berman 

[34], Berman and Gomide [35] have proposed a law of 

variation for Hubble parameter that yields a power and 

exponential forms of the average scale factor with 

constant value of DP. In Berman’s law, the DP (q) can 

get value 1 − ≥ q, and since 0 1 ≤ ≤ − q corresponds to 

accelerating expansion. So, many authors have studied 

cosmological models using this law but the recent 

theoretical analysis of type Ia supernovae 

(SNeIa)surveys large scale structure (LSS) and cosmic 

microwave background (CMB) anisotropy spectrum, 

which strongly indicate that our universe is spatially flat 

and has a phase transition i.e., past deceleration to 

recent acceleration. So, In order to match the results 

with this observation, many authors have defined 

different types of solutions (corresponds to DP and 

scale factor). 

 

We consider the value of the average scale factor 

corresponding to the model of the Universe as 
ttea  .                                  (18) 

 

Using the equations (3) and (18) we have values of 

metric potentials  
tteA                                  (19) 
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The metric (1) can be written as 
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4. Some Physical and Geometrical Features of the 

model 

The physical parameters such as the Hubble 

parameter H , the anisotropic parameter  mA , the 

shear scalar  2 , the expansion scalar   , and the 

spatial volume V of model (25), which are of 

cosmological importance, are, respectively, given by 
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tetV 33                              (27) 

 

It is evident from the above result in equation 

(30) that the spatial volume is zero at 0t . But we 

observe that as cosmic time t , the spatial volume 

expands to infinite. Therefore, the model starts evolving 

at 0t  and expands with cosmic time t . The mean 

anisotropy parameter is constant and different from zero 

for 1n . From equation (28), it is observed that the 

mean anisotropy parameter of the present model 

becomes zero for 1n and the anisotropy of the 

universe vanishes. But the universe is anisotropic 

throughout the evolution except for 1n . Other 

dynamical physical parameters such as expansion scalar

  , shear scalar  2 , and Hubble parameter  H  

diverge as cosmic time t  approaches to zero. These 

dynamical physical parameters are decreasing functions 

as cosmic time t  increases. Hence, the model (22) has a 

big bang type of initial singularity.  

 

The deceleration parameter  q  is obtained to be 

 22
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1
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,                               (28) 

 

Which is a constant value for late time 

throughout the evolution of the universe that means 

1q  as t . From equation (28), the universe 

will expand with decelerated rate for 0q accelerated 

rate for 0q ,and marginal inflation for 0q , One 

can explicitly observe the dependence of deceleration 

parameter  q  on the constant parameters n .Thus, we 

can obtain a decelerated or accelerated expansion of the 

universe depending on the suitable choices of these 

parameters. 

 

According to the recent observations of type Ia 

supernova (SNe Ia) [36-39] the present universe is 

accelerating and the value of deceleration parameter is 

in the range 01  q . Thus, the deceleration 

parameter of our model (22) is consistent with the 

recent astronomical observations. 

By solving the equations (12) to (16), we get 

 

The pressure of the model as, 
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Fig-1: Pressure of the model versus time with the appropriate choice of constants. 

 

Energy density of the model as, 
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Fig-2: Energy density of the model versus time with the appropriate choice of constants 

 

Gauge function of the model as, 

 

tet 33

1
                                                                                                      (31) 

 
Fig-3: Gauge function of the model versus time with the appropriate choice of constants 

 

From equation (31), we observe that at early 

time, the gauge function   tends to infinity in this 

limit and also it tends to zero as cosmic time t . It 

is large in the beginning and decreases fast with the 

evolution of the universe. Hence,   is a decreasing 

function of cosmic time t . Thus, the model has 

singularity at 0t .It is clearly shows that the behavior 

of   is as decreasing function of cosmic time t. It can 

be concluded that as n values increase, the values of 

  decrease more with cosmic time increases. The 

physical parameters such as Hubble parameter  H , 

anisotropic parameter  mA , shear scalar  2 , 

expansion scalar   , spatial volume  V , and 

deceleration parameter  q  are found to be the same as 

in the above case of general relativity. 

 

CONCLUSIONS 
In this paper, we have studied anisotropic and 

homogeneous Bianchi type V universe filled with 

perfect fluid in the framework of Lyra’s geometry. The 

solutions for field equations of cosmological models are 

obtained in Lyra’s geometry by using two specific 

cases: firstly by taking the expansion scalar    in the 

model is proportional to the shear scalar  2  as 

considered by Thorne [40] and Collins et al. [41] and 

secondly by using the average scale factor as hybrid 

expansion form (combination of the power law and 

exponential form).  We have observed that the gauge 

function    is a decreasing function of cosmic time t  

in Lyra’s geometry. The gauge function    is large in 

the beginning and reduces fast with the evolution of the 

universe. It is found that for late cosmic times the gauge 

function 0  and Lyra’s geometry tends to general 

relativity in all respects. The present model of the gauge 

function    is infinite at the initial singularity. The 

concept of the Lyra manifold is meaningful for finite 

time, but does not remain for very large time. But we 

have observed that the dynamical parameters: the 

average Hubble parameter, spatial volume, anisotropy 

parameter, expansion scalar and shear scalar, are the 

same in both frameworks. In each case, the 

cosmological models approach to anisotropic parameter 

for large value of cosmic time t . The model represents a 
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shearing, nonrotating, and expanding universe, which 

approaches anisotropy for large value of time t . The 

present model is consistent with the recent observations 

of the present day of accelerating universe. 
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