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Abstract  Original Research Article 
 

Multicollinearity is a phenomenon when two or more predictors are highly correlated that leading the matrix      to 

be singular, and hence identifying the least squares estimates will encounter numerical problems. In this work, we 

proposed two remedial measures for handling severe multicollinearity in the least-squares estimation, namely, the 

Ridge regression, and Least Absolute Shrinkage and Selection Operator (Lasso). A simulation study was conducted to 

compare the two proposed methods under different settings. These settings include different sample sizes, a variety of 

several explanatory variables used in the model along with the difference in the degree of correlation that exists among 

the explanatory variables, and finally the dependency of the error terms on the normal or non-normal distributions. 

This simulation study is novel in the field of Shrinkage Estimators, also may increase the effective capabilities of 

Ridge Regression, and several interesting results have been achieved. 
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1. INTRODUCTION 
Regression analysis is a statistical method for 

studying such a relationship that exists between one 

dependent variable, y, and the explanatory variables 

            . It is probably one of the oldest topics in 

the area of mathematical statistics dating back to about 

two centuries ago. The traditional method of parameters 

estimation for the linear regression models is the 

Ordinary Least Squares Estimation. Four of the major 

problem areas in the least Squares Analysis relate to 

failures of the basic assumptions, they are namely: Non-

normality Problem, Heterogeneous Variances Problem, 

Correlated Errors Problem, Collinearity Problem 

(Baltagi 2001). Although, an alternative to Least 

Squares regression when the assumptions are not 

satisfied is known as the Robust Regression. Robust 

Regression refers to a general class of statistical 

techniques designed to reduce the sensitivity of the 

estimates to failures in the assumptions of the 

parametric model. A Robust Regression procedure 

would decrease the impact of such errors by reducing 

the weight given to large residuals. This can be done by 

minimizing the sum of absolute residuals, instead of the 

sum of squared residuals (Huber (1981) and Hampel et 

al., (1986). 

 

 The Collinearity Problem 1.1

The X matrix contains the explanatory 

variables and may cause singularity when some linear 

combinations of the columns of X are exactly equal to 

zero. It comes more obvious when the least-squares 

analysis is computed because the unique solution 

of        does not exist. The difficulties that arise 

from X being nearly singular are known as the 

collinearity problem. The impact of collinearity on least 

squares is very serious if the purpose is to estimate the 

regression coefficients or if the purpose is to identify 

the important variables involved in the process. The 

estimates of the regression coefficients can differ 

greatly from the parameters they are estimating, even to 

the extent of having an opposite sign. Moreover, the 

collinearity allows important variables to be replaced in 

the model with related variables that are involved in the 

near singularity. Therefore, the regression analysis 

provides small suggestions of the relative importance of 

the explanatory variables. 

 

In this paper, our prime interest is to handle the 

collinearity problem when estimating the coefficients 

for linear regression models. 
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There are several ways for near-singularity to emerge: 

1. A bad mathematical model that puts restrictions on 

explanatory variables that forces them to add to a 

constant will generate collinearity.  

2. Explanatory variables of the application may show 

near-linear dependencies because of the biological, 

physical, or chemical restrictions.  

3. Insufficient sample size may create data in which 

the near-linear dependencies are an artifact of the 

data collection process )Yan and Su 2005(. 

 

It is not easy to identify the origin of the 

collinearity problem, but it is extremely important to 

understand its nature as much as possible. Having 

known the nature of the collinearity problem will 

always help to determine its origin and, in turn, find 

suitable ways of handling the problem and of 

interpreting the regression results. 

  

 Introduction to Biased Regression 1.2

Biased regression refers to these methods of 

regression in which unbiasedness is no longer an 

essential condition. Thus, the Biased regression 

methods have been recommended as a possible solution 

to the collinearity problem. The motivation behind the 

biased regression methods is based on the possibility for 

obtaining estimators that are very close on average, to 

the parameter being estimated other than those obtained 

using the least-squares estimators. The MSE is 

considered to be the best measure of averaging the 

“nearness” of an estimator to the parameter being 

estimated. 

 

If  ̃ is a biased estimator having a smaller 

mean squared error than an unbiased estimator  ̂ , the 

MSE of  ̃ can be defined as 

MSE ( ̃) =    ̃      (1) 

 

Recall that the variance of an estimator  ̃ can 

also be defined as 

Var ( ̃) = [ ̃      ̃  ]
 
 (2) 

 

That means, the MSE is computing the average 

squared deviation of the estimator from the parameter 

being estimated, whereas the variance is computing the 

average squared deviation of the estimator from its 

expectation. If the estimator is unbiased, then    ̃    

and MSE ( ̃) =  ( ̃). If the estimator is biased, then the 

MSE is equal to the variance of the estimator plus the 

square of its bias, where Bias ( ̃) =  ( ̃)   . The 

biased estimator can obtain a variance that is 

sufficiently smaller than the variance of an unbiased 

estimator to compensate for the bias introduced (Hoerl 

et al 1975). Therefore, it may be possible to find an 

estimator for which the sum of its squared bias and its 

variance (i.e. the MSE) is smaller than the variance of 

the unbiased estimator. Many biased regression 

methods have been proposed as solutions to the 

collinearity problem. Stein shrinkage (Stein(1960)), 

Ridge Shrinkage Regression (Hoerl and Kennard 

(1970), the LASSO was proposed by Tibshirani (1996).  

 

In this paper, we will address one of the 

problems which is the Multicollinearity that indicates 

strong correlations among some of the explanatory 

variables. We suggest in this paper two methods in what 

so-called Shrinkage estimators of Ridge regression and 

LASSO. The Ridge Shrinkage Regression is trying to 

solve the Multicollinearity problem by reducing the 

severity of the phenomenon, and this is at the expense 

of the bias of feature estimates. While the LASSO 

method works to end or cancel "delete" variables most 

affected by the linear correlation problem and at the 

expense of shrinking explanatory variables. 

 

The statistical procedures to be presented in 

this paper can be formulated as usual regression 

analysis. These procedures differ in the X-matrix 

working and how that matrix is determined. Whatever 

the X-matrix used, there will be a set of regression 

coefficients. Two suggestions have been offered for 

how to control the scale of regression coefficients, 

which are:  

1. The   –penalty which means constraining the sum 

of the absolute values of the regression coefficients 

to be less than some constant C. 

2. The   –penalty which means constraining the sum 

of the squared regression coefficients to be less 

than some constant C. 

 

Both suggestions lead to “shrinkage methods. 

When shrinkage is applied to usual regression estimates 

there can be, as noted above, two goals. First, one might 

be interested in model selection. The lasso can provide 

useful alternatives to usual model selection procedures. 

Second, one might be interested in striking a good 

balance between the bias and the variance, the Ridge 

Regression is then used. 

 

A Simulation study is conducted to make 

comparisons between the two suggested methods under 

different settings. 

 

2. METHODOLOGY 
In this section, some necessary groundwork 

will be laid concerning proposed remedial measures for 

handling severe multicollinearity that will be used in 

this paper. 

 

2.1 Shrinkage Estimators 

Let the explanatory variables used in this study 

be arranged in matrix form which we call the X-matrix. 

The procedures to be presented in this section can be 

formulated as a straightforward extension to regression 

analysis. These procedures differ in X-matrix working 

and also how that X-matrix is determined. Whatever the 

X-matrix used, there will be equal to the number of 

regression coefficients. The larger the absolute value of 

these coefficients the more the fitted values can vary. If 
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the regression coefficient is equal to zero, the fitted 

values will be a straight line (i.e. parallel to the x-axis, 

positioned at the unconditional mean of the response). 

As the regression coefficient gets increasing, the 

resulting step function will have a step of increasing 

size. The fitted line becomes more irregular. Generally, 

the potential for irregularity fitting is greater as the 

regression coefficients increase (Hoerl et al., 1975). 

Two popular suggestions have been offered for how to 

control the magnitude of regression coefficients (as 

stated in section 1.2), there are: 

 

However, the smaller the value of C is, the 

smaller the sum. As well as the smaller the sum is, the 

smaller the regression coefficients in magnitude. These 

two constraints lead to so-called shrinkage methods. 

Simply, the regression coefficients have been shrunk 

toward zero, making the fitted values more 

homogeneous. Therefore, the main goal is to introduce 

a small amount of bias into the computed regression 

coefficients in trade for a considerable amount of 

reduction in their variance ( Baltagi 2001). 

 

2.2 Introduction to Ridge Shrinkage Regression 

In order to motivate the theoretical development of the 

Ridge Shrinkage Regression estimator, take a closer 

look at the mean squared error of the least-squares 

estimator of   

MSE( ̂) =    ̂          (3) 

 

Remember that the MSE is usually used as a 

measure for assessing the quality of estimation, which 

consists of two parts: the squared bias and the variance, 

and can be written in the following form:  

 ‖ ̂     ‖
 

 ∑         
   ∑ { (  )    }

 
 ∑    (  )   (4) 

 

The Gauss-Markov theorem states that the 

least-squares approach achieves the smallest variance 

among all unbiased linear estimates. Although, the 

minimum MSE is not necessarily guaranteed. To make 

a better understanding of different types of shrinkage 

estimators, let  ̂   denote the ordinary least squares 

estimator. 

 

The multiple linear regression model is         

 

The estimator  ̂   =            is an unbiased 

estimator of   in addition,  

E( ̂  ) =          ( ̂  )              

 

We have 

MSE( ̂  ) = E‖ ̂  ‖
 
  ‖ ‖ . 

= tr{         }         {       } (5) 

 

Therefore, by rearranging (5), we get  

 (‖ ̂  ‖
 
)   ‖ ‖  +       {       } (6) 

 

Because of the ill-conditioned in    , the 

resultant least-square estimate of  ̂  would be large in 

length‖ ̂  ‖ and related to large standard errors. As 

well, this large variation would lead to the poor model 

prediction. 

 

The Ridge Shrinkage Regression is a 

constrained type of least squares. It solves the 

estimation problem by producing a biased estimator, 

however, with small variances (Weisberg 2005). 

 

2.3 Theoretical Development of Ridge Shrinkage 

Estimator 

For any least squares estimator  ̂, the least-

squares criterion can be rewritten as its minimum, 

reached at‖ ̂  ‖. The quadratic form in b: 

Q(b) = ‖    ̂     ̂     ‖
 
 

= (     ̂  )
 
       ̂    +        ̂               ̂    

=            (7) 

 

Contours for each constant of the quadratic 

form      are hyperellipsoids centered at the ordinary 

LSE  ̂  .It is reasonable to expect from (7) that, if one 

moves away from     , the movement is in a direction 

that shortens the length of  ̂ .  

 

In Ridge Shrinkage Regression, the optimization 

problem can be defined as: 

minimizing ‖ ‖ subject to       ̂              ̂    

=    (8) 

 

For some constant   . The imposed constrain 

guarantees a reasonably small residual sum of squares 

Q( ) when compared to its minimum     . Figure (1) 

displays the contours of the residual sum of squares 

together with the   ridge shrinkage constraint in the 

two-dimensional case (Kotz and Nadarajah 2004). 

 

 
Figure 1: Contours of the Sum of Squares of the Residual and the 

Constraint Functions in Ridge Shrinkage Regression 
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In the view of the Lagrangian problem, it is equivalent 

to minimizing 

       ‖ ‖     ⁄  {      ̂            

  ̂       } (9) 

 

Where k is the deflection factor chosen to satisfy the 

constraint. 

 

Therefore, differentiate                        
      

  
    (  ⁄ ){               ̂  }    (10) 

 

That yields the Ridge Shrinkage estimator as follows 

 ̂  = {       }      (11) 

 

An alternative way is to state the Ridge Shrinkage 

problem in the constrained least-squares form by 

minimizing‖    ‖            ‖ ‖      
 

For some constant value of s.  

Hence, the Lagrangian problem becomes simply 

minimizing that 

‖    ‖      ‖ ‖  

 

which produces the same estimator given in 

(11). The penalty parameter    controls the amount 

of shrinkage in       . As the value of   gets larger, the 

greater amount of shrinkage. For this reason, the Ridge 

Shrinkage estimator is often called the shrinkage 

estimator. There is a one-to-one correspondence among 

four values  , s, k and   (Bates and Watts 1988 ). It is 

extremely important to note that the formal Ridge 

Shrinkage solution is not invariant under the scaling of 

the explanatory variables. Therefore, standardization of 

both the explanatory variables and the response is 

essential, that is: 

   
  

      ̅ 

   

       
   

    ̅

  

 

 

Before using the Ridge Shrinkage estimator in 

(11). It is helpful to adopt the following standardized 

variables notation, the matrices     and     becomes as 

follows: 

         and    =     

 

Note that     denotes the correlation matrix 

among   's, and    denotes correlation vector between 

Y and all   's. Now, the Ridge Shrinkage estimator can 

be written as: 

 ̂  = {      }      (12) 

 

If the explanatory variables are orthogonal 

(     ), then the Ridge Shrinkage estimates are just a 

scaled version of least squares estimates (it is equivalent 

to,  ̂  
 

   
  ̂  for some shrinkage constant (0 

 

   
  ). 

 

In addition, the intercept          goes to  

when working with standardized data. Having obtained 

a Ridge Shrinkage estimator  ̂ , transformation step of 

its components is necessary in order to get the fitted 

linear regression equation between the original Y and 

  values. It is suitable to express in matrix form the 

normalization and its inverse transformation involved. 

Let    be the original design matrix. Its centered 

version is given by: 

           
       

 

And its normalized version is 

X =         

Where   be the n-dimensional vector with all elements 

are ones and L be a diagonal matrix with diagonal 

elements from the matrix   
   , i.e., 

L = diag (  
   ). 

 

Likewise, the original response vector y0 can be 

normalized as 

y = 
        

      

  
, 

Where    is the sample standard deviation of    . 

 

It is straightforward to use the Ridge Shrinkage 

estimator  ̂  in (11) to predict with a new data matrix 

     (which is m p on the original data scale). 

 

The predicted vector  ̂   is then given as : 

 ̂        {          
           ̂  

    
     } (13) 

 

Thus, the computation of the expectation and 

variance of  ̂  can be obtained using the following 

relation 

 ̂     ̂   (14) 

 

Were 

Z = {          }   

 

It follows that 

E( ̂ ) = Z   (15) 

 

Cov( ̂ ) =               (16) 

 

Finally, comparison can be achieved between 

 ̂  with  ̂   to see which estimator has a smaller MSE 

for certain values of k. 

Let the ascending order sequence of the eigenvalues of 

the Z matrix as follows:  

                        
 

From standard least square estimation, it is well known 

that 

MSE( ̂  ) =    ∑       
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For the Ridge Shrinkage estimator, the 

components of the Mean squared errors can be found 

from (15) and (16). The first component is the sum of 

their squared biases is 

∑{ ( ̂ 
 )    }

 
  

 

{ ( ̂ )   } { ( ̂ )   } 

∑{ ( ̂ 
 )    }

 
  

 

               

=                (17) 

 

And the second component is the sum of their variances 

is 

tr{Cov( ̂ )} =     {          } 

=   ∑ {
 

  
 

  
 

(    )
 }     ∑ {

  

       
}    (18) 

 

Therefore, the MSE for the Ridge Shrinkage estimator 

is as follows 

MSE( ̂   ) =  ∑ {
  

       
}       

              

=             (19) 
 

It is worth noting that the first quantity      is 

a monotonic decreasing function of k while the second 

quantity       is monotonically increasing. The 

constant k reflects the amount of bias increased and the 

variance decreased. Whereas, when k = 0, it turns into 

the usual Least Squares Estimates )Hoerl et al., and 

Kennard 1970). 

 

Had shown that there always exists a k >0 such that 

MSE( ̂   )   MSE( ̂   ) = MSE( ̂    

 

Finally, the Ridge Shrinkage estimator can be 

superior in comparison with the Least Squares 

Estimator in terms of providing a smaller MSE. 

However, in practice, the right choice of k is yet to be 

determined and hence there is no guarantee that a 

smaller MSE always is achieved by the Ridge 

Shrinkage Regression. The statistical properties of the 

Ridge Shrinkage estimator are tabulated in Table 1.  

 

Table 1: Some of the most important statistical properties of the Ridge Shrinkage estimator 

Sr Property Formula 

1 Mean E( ̂   =         
        

2 Variance Var( ̂      ∑
  

       
 
    

3 Var-Cov matrix Cov( ̂ )=Cov(Z ̂) 

=            
              

   

=        
4 Bias Bias( ̂ ) = -k         

    

= -k P(
 

    
)      

5 MSE 
MSE( ̂ ) =   ∑

  

       
 
    + ∑

    
 

       
 
    

 

2.4 The LASSO and Other Extensions of Ridge 

Shrinkage Regression  

The LASO is another shrinkage method like 

Ridge Shrinkage Regression, however with an 

important and attractive feature in variable selection. 

Rather, the Ridge Shrinkage Regression makes the 

selection process continuous by varying shrinkage 

parameter   and hence becomes more stable. Through 

this process, the Ridge Shrinkage Regression does not 

set any coefficients to zero, since it does not give an 

easily interpretable model as in subset selection 

(Greene2000). The LASSO technique is proposed to 

maintain the advantages of both subset selection and 

ridge regression by shrinking some coefficients and 

setting other coefficients to 0. The LASSO estimator 

of   is obtained by 

minimizing ‖    ‖            ∑     
 
     . 

 

More Explicitly, the   penalty∑   
  

 in Ridge, 

Shrinkage Regression is replaced by the 

  penalty∑ |  | in LASSO. If s is chosen to be greater 

than or equal to∑    
     , then the LASSO estimates are 

the same as the least-squares estimation. If s is chosen 

to be smaller than∑    
     , then it will cause shrinkage 

of the solutions towards zero. 
 

Figure 2 displays the contours of the residual 

sum of squares together with the  LASSO constraint in 

the two-dimensional case (Greene 2000). 
 

 
Figure 2: Contours of the Sum of Squares of the Residual and the 

Constraint Functions in LASSO 
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It is worth noting that, in Figure 2.1, the 

constraint region in Ridge Shrinkage Regression has a 

disk shape. While, in Figure 2.2, the constraint region in 

LASSO has a diamond shape. It can be seen that both 

the Ridge Shrinkage Regression and the LASSO 

methods start by finding the first point at which the 

elliptical contours hit the constraint region. But, unlike 

the disk of the Ridge Shrinkage Regression case, the 

diamond in the LASSO has corners. If the solution 

occurs at a corner, then it has one coefficient  ̂ equal to 

zero. 

 

It can also be viewed that, the LASSO solution 

is competitive with the Ridge Shrinkage Regression 

solution but with many zero coefficient estimates. In the 

case of or the normal designs where     = I, the 

LASSO estimator can be written as: 

 ̂ 
      = sign   ̂ 

   {| ̂ 
  |     }+ (20) 

 

Where   is determined by the condition ∑   ̂ 
          

 

In Conclusion, the coefficients whose values 

are less than the threshold   would be automatically 

forced to go to 0 while the coefficients whose values are 

larger than  would be shrunk by a unit of  . Therefore, 

the LASSO technique performs as a variable selection 

operator (Baltagi 2001). 

 

In general, the non-smooth behavior of the 

LASSO constraint makes the solutions nonlinear in the 

response variable y. Efron et al (2004) in their initial 

proposal of LASSO had used quadratic programming to 

solve the optimization problem. It is based on using the 

fact that the condition∑         is equivalent to   
 for 

all i= 1, 2, . . . ,   , where   is the p-tuples of form 

(±1,±2, . . . ,±p). 

 

Others such as Efron et al., (2004) have 

developed a compact descent method for solving the 

constrained LASSO problem for any fixed s.  

 

Lately, Efron et al., (2004) have derived a 

different approach, called the Least Angle Regressions 

(LARS). The LARS enables a variable selection method 

in a specific way. Since the entire path of LASSO 

solutions as s varies from 0 to +∞ can be extracted with 

a small modification on LARS. The LARS method 

works only with normalized data and employed 

iteratively technique to predict the response  ̂ with 

updating steps (Freund and Littell, 2000). 

 

We have compared the performance of the 

Ridge Shrinkage Regression and the LASSO in a larger 

context. A major interest in this paper is the patterns of 

shrinkage as the λ changes. Ridge Shrinkage Regression 

tends to shrink the coefficients so that they all reach 

zero together as λ gets large. The LASSO shrinks the 

coefficients so that some reach zero well before others 

as λ gets large (Hastie et al., 2002). 

3. THE SIMULATION STUDY 
This section is devoted to comparing the 

performance of the two proposed estimators: namely: 

The Ridge and the Lasso estimators that used to treat 

the problem of Collinearity via simulation. In order to 

better identify the properties of the ridge estimator and 

some of its alternatives, we have computed two sets of 

simulations. The exact procedures are described in the 

following section (3.1). The simulations include several 

ridge and Lasso methods. We did include the related 

lasso approach despite the fact it is primarily used for 

model selection, not estimation. 

 

All computations and graphics in this thesis 

were carried out using the software package R, which is 

based on the statistical language S (Statistical Science, 

Inc. 2015). However, we believe that our results are 

very useful for assessing the practical performances of 

the two proposed estimators that are used to solve the 

Collinearity problem. 

 

3.1 Description of The Experiment 

In this simulation study, the ridge estimator is 

compared to both OLS and Lasso using various choices 

of correlation (ρ = 0.10, 0.25, 0.50, 0.75, and 0.90) 

between predictors. This was done in order to better 

quantify some of the commonly cited advantages of the 

ridge estimator, such as it performs best when the 

predictors are strongly correlated. To cover the effects 

of various situations of Collinearity on the regression 

model, the study is classified into two different patterns, 

as follows: Pattern 1: Error terms are distributed as 

normal, Pattern 2: Error terms are distributed as non-

normal. In each Pattern, several choices of the number 

of independent variables (p=2, 5, 10, and 20). The 

sample sizes considered were n = 25, 50, and 100, and 

the model was of the form Y=   . Lastly, two 

different marginal distributional errors were used: 

namely the normal distribution, and the heavy-tailed t 

distribution. 

 

Experimenting with different choices of 

correlations (ρ = 0.10, 0.25, 0.50, 0.75, and 0.90) 

between the choice number predictors (p), and three 

different sample sizes (n) 25, 50, and 100, also the two 

different marginal errors’ distributions for 1000 

independently different runs, each gives the means and 

standard deviations of the mean square error (MSE) 

obtained by utilizing the three proposed estimators, 

namely the OLS estimator, the Ridge estimators, and 

Lasso estimator. 

 

Next, we present the graphical summary 

obtained from the simulation study in each pattern of 

errors distribution. 
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Pattern 1: Errors are distributed as normal and p = 2,5,10, and 20: 

 

(a) P=2 (b) P=5 

  

(c) P=10 (d) P=20 

  
Figure 3: The Box-plots demonstrate how various choices of correlation affect the mean (standard deviation) of the MSE value 

for the three proposed estimators (OLS, Ridge, and Lasso) for (a) P=2, (b) P=5, (c) P=10, and (d) P=20 in pattern1 

 

Having examined Figure 3 very carefully in the case of 

errors belonging to Normal distribution and P= 2, 5, 

10, and 20, we have noted the following points: 

1. The values of MSEOLS increase very dramatically 

and they behave badly in comparing with the 

corresponding counterparts of MSELasso and 

MSERidge in the case of multi-collinearity presence. 

2. The numerical results support the superiority of the 

Ridge estimator followed closely by the Lasso 

estimator as the sample sizes increase from 25, 50, 

and 100. 

3. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 5), the Ridge estimator performs best (e.g. 

MSERidge = 1.083815 when ρ = 0.25 and n = 100 

where MSELasso = 1.133132 at the same values of 

n and ρ). 

4. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 10),the Ridge estimator performs best (e.g. 

MSERidge = 1.113801 when ρ = 0.9 and n = 100 

where MSELasso = 1.282817 at the same values of 

n and ρ). 

5. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 20), the Ridge estimator performs best (e.g. 

MSERidge= 1.141078 when ρ = 0.9 and n = 100 

where MSELasso = 1.689402 at the same values of 

n and ρ). 
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6. In general, the best performance (the smallest 

values of averaged MSE) has been achieved by the 

Ridge estimator for all possible choices of P = 2, 5, 

10, and 20, all possible choices of correlations ρ 

(0.10, 0.25, 0.50, 0.75, and 0.90) as well as all 

possible sample sizes (n=25, n=40, and n=100) 

when the marginal errors’ distributed as normal. 

 

Final remark, for a fixed choice of correlation 

ρ, the change in the estimated values of MSE is 

insignificant as the value of sample sizes increases from 

n=25, 50, and 100.  

 

In summary, the estimated values of MSE 

decrease as the sample size increases from n = 25, 50, 

and 100. The Ridge estimator has provided better-

estimated MSE values regardless of the choice of the 

sample size as well as the choice of correlation ρ exists 

among the two explanatory variables. 

The best performance (the smallest values of 

averaged MSE and stander deviation and its 

corresponding standard deviations) has been achieved 

by the Ridge estimator for all possible choices of 

correlations (0.10, 0.25, 0.50, 0.75, and 0.90) as well as 

all possible of sample sizes (n=25, n=50, and n=100) 

when the marginal errors’ distributed as normal 

 

Pattern 2: Errors are distributed as Non-normal and 

p =2, 5, 10, and 20 

 

(a) P=2 (b) P=5 

  
(c) P=10 (d) P=20 

  

Figure 4: The Box plots demonstrate how various choices of correlation affect the mean (standard deviation) of the MSE value 

for the three proposed estimators (OLS, Ridge, and Lasso) for (a) P=2, (b) P=5, (c) P=10, and (d) P=20 in pattern 2 
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Having examined Figure 4 very carefully in 

the case of errors belonging to Non-Normal distribution 

and P= 2, 5, 10, and 20, we have noted the following 

points: 

1. The values of MSEOLS increase very dramatically 

and they behave badly in comparing with the 

corresponding counterparts of MSELasso and 

MSERidge in the case of multi-collinearity presence. 

2. The numerical results support the superiority of the 

Ridge estimator followed closely by the Lasso 

estimator as the sample sizes increase from 25, 50, 

and 100. 

3. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 5), the Ridge estimator performs best (e.g. 

MSERidge = 3.129667 when ρ = 0.9 and n = 100 

where MSELasso = 3.259719at the same values of n 

and ρ). 

4. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 10), the Ridge estimator performs best (e.g. 

MSERidge = 3.164759whenρ = 0.9 and n = 100 

where MSELasso = 3.54715at the same values of n 

and ρ). 

5. When increasing the sample size (n = 25, 50, and 

100) and in the case of the explanatory variables (p 

= 20), the Ridge estimator performs best (e.g. 

MSERidge= 3.231649 when ρ = 0.9 and n = 100 

where MSELasso = 4.326057 at the same values of n 

and ρ). 

6. Once more, the best performance (the smallest 

values of averaged MSE) has been achieved by the 

Ridge estimator for all possible choices of 

correlations (0.10, 0.25, 0.50, 0.75, and 0.90) as 

well as all possible sample sizes (n=25, n=40, and 

n=100) when the marginal errors’ distributed as 

non-normal. 

 

To sum up, when the sample size was fixed at 

n = 100 and choices of correlation ρ varies from 0.10 to 

0.90, it was concluded that the Ridge estimator once 

more gives smaller values of MSE along with their 

corresponding counterparts standard errors followed 

closely by the values obtained by Lasso estimator. 

 

Final comment, for a fixed choice of 

correlation ρ, the change in the estimated values of 

MSE is insignificant as the value of sample sizes 

increase from n = 25, 50, and 100.  

 

In summary, the estimated values of MSE 

decrease as the sample size increases from n = 25, 50, 

and 100 for all proposed estimators used. The Ridge 

estimator has provided better-estimated MSE values 

regardless of the choice of the sample size as well as the 

choice of correlation ρ exists among the two 

explanatory variables. 

 

The best performance (the smallest values of 

averaged MSE and stander deviation and its 

corresponding standard deviations) has been achieved 

by the Ridge estimator for all possible choices of 

correlations (0.10, 0.25, 0.50, 0.75, and 0.90) as well as 

all possible of sample sizes (n=25, n=50, and n=100) 

when the marginal errors’ distributed as non-normal. 

This means that the Ridge estimator works well 

regardless of the choice of the error term distribution of 

either normally or non-normally distributed.  

 

4. DISCUSSION OF THE RESULTS AND 

CONCLUSION 
The purpose of this section is to summarize the 

similarities and the differences between the Ridge 

regression estimator and the Lasso estimator which are 

used to handle and solve the "multi-collinearity" 

problem when the errors are either normally distributed 

or non-normally distributed. 

 

4.1 The Discussion of the 1st Simulation Study 

The comparisons among (OLS, Ridge 

Regression, Lasso) were made using the mean values of 

(MSE) as well as their corresponding values of standard 

deviations assuming that the error terms are distributed 

as normal. The following two interesting points have 

been concluded:  

1. Ridge regression is one of the more common, 

although debated, estimation procedures for 

solving the multi-collinearity problem. The 

procedures discussed in this simulation fall into the 

category of biased estimation techniques. They are 

based on this idea: despite that OLS gives the best 

linear unbiased estimators (BLUE), there is no 

upper bound on the variance of the estimators and 

the presence of multicollinearity may produce large 

variances. Consequently, one can visualize that, 

under the condition of multi-collinearity, a huge 

price must be paid for the unbiasedness property 

that one achieves by using OLS. Biased estimation 

is used to accomplish a substantial reduction in 

variance with an accompanying increase instability 

of the regression coefficients. The coefficients 

become biased and, if one is successful, the 

reduction in variance is of greater magnitude than 

the bias made in the estimators. 

2. The Ridge estimator provides the smallest mean 

and standard deviation values of MSE followed by 

the Lasso estimator. Whereas, the OLS estimator 

provides the largest mean and standard deviation 

values of MSE, with a normal distribution of errors 

and different selected values of the correlation 

coefficient. We noted that the values of MSE and 

their corresponding standard deviations of the 

Ridge estimator maintained the smallest for all 

selected correlations regardless of the number of 

different explanatory variables or the sample size. 

 

4.2 The Discussion of the 2
nd

 Simulation Study 

In the second simulation study, it was assumed 

that the errors were distributed according to the heavy-

tailed t-distribution (Non-normal distribution). All other 



 

    
Ahmed M. Mami et al., Sch J Phys Math Stat, Oct, 2021; 8(8): 143-152 

© 2021 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          152 

 

 

settings were made as in the first simulation study. The 

following four interesting points have been reached:  

1. We have noted that the three estimators (OLS, 

Ridge Regression, Lasso) behaved in the same 

manner as when the errors were distributed 

normally. 

2. The OLS estimator continued to give very large 

MSE values due to the problem of multi-

collinearity. 

3. The Ridge estimator maintains its superiority over 

the Lasso estimator, albeit with a slight difference 

such that it gives the smallest MSE value as well as 

the smallest standard deviation value. 

4. Shrinkage estimators of Ridge regression and 

Lasso have proven to be robust due to non-normal 

errors’ distribution, since no significant effect on 

the simulation results. 
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