Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch J Phys Math Stat ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online) Journal homepage: <u>https://saspublishers.com</u>

Some Results on R-KKM Mappings and R-KKM Selections in GFC-Space

Rui-Jiang Bi^{1*}, Rong-Hua He¹

¹College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610025, Sichuan, P. R. China

DOI: <u>10.36347/sjpms.2022.v09i04.004</u>

| **Received:** 11.04.2022 | **Accepted:** 19.05.2022 | **Published:** 24.05.2022

*Corresponding author: Rui-Jiang Bi

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610025, Sichuan, P. R. China

R-KKM mapping and R-KKM selection are introduced in GFC-space, some non-empty intersection theorems are proved, and some related results of Verma in G-H-space is generalized.

Keywords: GFC-space; R-KKM mapping; R-KKM selection; non-empty intersection theorem.

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

Since 1987, after Horvath[1] gave H-space without linear structure by replacing convex hull with contractible set, Park and Kim[2] introduced G-convex spaces, Verma[3-8] introduced G-H-space and gave R-KKM selection in G-H-space, Ben-El-Mechaiekh[9] *et al.* introduced L-convex spaces, Ding[10] introduced FC-space without any convexity structure, Khanh[11, 12] *et al.* introduced GFC-space, and in this paper, we give R-KKM selection and R-KKM theorem in GFC-space and generalize some related results in recent literature.

2. PRELIMINARIES

Let X be a nonempty set. We denote by 2^X and $\langle X \rangle$ the family of all subsets of X and the family of all nonempty finite subsets of X. Let Δ_n be the standard (n-1) simplex with vertices $\{e_1, e_2, ..., e_n\}$ in \mathbb{R}^n . For any nonempty subset J of $\{1, 2, ..., n\}$, let $\Delta_J = (\{e_j : j \in J\})$.

Definition 2.1. ([12])

Let X be a topologic space, Y be a nonempty set, and Φ be a family of continuous mappings $\varphi: \Delta_n \to X$, $n \in N$. Then a triple (X, Y, Φ) is said to be a generalized finitely continuous topological space (GFC-space in short) if for each finite subset $N = \{y_1, y_2, ..., y_n\} \in \langle Y \rangle, \text{ there is } \varphi_N : \Delta_n \to X$ of the family Φ .

Definition 2.2.

Let (X, Y, Φ) be a GFC-space and $T: Y \to 2^X$ a multivalued mapping. T is said to be a R-KKM mapping if for any $\{y_1, y_2, ..., y_n\} \in \langle Y \rangle$ there exists a subset $\{x_1, x_2, ..., x_n\} \in \langle X \rangle$ such that

$$\varphi_N(\Delta_k) \subset \bigcup_{j=1}^k T(y_{i_j})$$

for a subsimplex $(e_{i_1}, e_{i_2}, ..., e_{i_k})$ of $(e_1, e_2, ..., e_n) = \Delta_n$ for $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$.

Definition 2.3.

Let (X, Y, Φ) be a GFC-space, $x_1, x_2, ..., x_n$ be *n* elements of *X* and, $M_1, M_2, ..., M_n$ subsets of *X*. Elements $F = \{x_1, x_2, ..., x_n\} \in \langle X \rangle$ are called a relative R-KKM selection for $M_1, M_2, ..., M_n$ if for $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$, we have $\varphi_N(\Delta_k) \subset \bigcup_{j=1}^k M_{i_j}$ Where $(e_{i_1}, e_{i_2}, ..., e_{i_k})$ is a standard (n-1) subsimplex of $(e_1, e_2, ..., e_n)$ in \mathbb{R}^n .

Definition 2.4.

Let A be a subset of X. A is said to be compactly open (or compactly closed) in X if for each nonempty compact subset K of X, $D \cap K$ is open (or closed) in K.

Let X and Y be two sets and $S: X \to 2^Y$ be a set-valued mapping, then $S^{-1}: Y \to 2^X$ and $S^*: Y \to 2^X$ are defined as $S^{-1}(y) = \{x \in X : y \in S(x)\}$ and $S^*(y) = X \setminus S^{-1}(y)$, respectively. Obviously, $x \in S^*(y)$ when and only when $y \notin S(x)$.

3. R-KKM Type Theorems

Theorem3.1.Let (X, Y, Φ) be a GFC-space, and $M_1, M_2, ..., M_n$ compact closed subsets of X. Suppose that $F = \{x_1, x_2, ..., x_n\} \in \langle X \rangle$ is a R-KKM selection for $M_1, M_2, ..., M_n$. Then we have $\bigcap_{i=1}^n M_i \neq \emptyset$.

Proof. Suppose $\bigcap_{i=1}^{n} M_i = \emptyset$, then we have $\varphi_N(\Delta_n) \subset X \setminus \bigcap_{i=1}^{n} M_i = \bigcup_{i=1}^{n} (X \setminus M_i)$. It follows that

$$\varphi_N(\Delta_n) = \bigcup_{i=1}^n ((X \setminus M_i) \cap \varphi_N(\Delta_n))$$

Since M_i is a compact closed subset, $\{(X \setminus M_i) \cap \varphi_N(\Delta_n)\}_{i=1}^n$ is a open cover of $\varphi_N(\Delta_n)$. . Let $\{\Psi_i\}_{i=1}^n$ be the continuous partition of unity subordinate to the open covering, then we have that for each $i \in \{1, 2, ..., n\}$ and $y \in \varphi_N(\Delta_n)$,

$$\psi_i(y) \neq 0 \Leftrightarrow y \in (X \setminus M_i) \cap \varphi_N(\Delta_n)$$
(1)

Define a mapping $\Psi : \varphi_N(\Delta_n) \to \Delta_n$ by $\Psi(y) = \sum_{i=1}^n \psi_i(y) e_i, \forall y \in \varphi_N(\Delta_n)$. Obviously, $\Psi \circ \varphi_N : \Delta_n \to \Delta_n$ is continuous. By the Brouwer fixed-point theorem, there exists a point $z_0 \in \Delta_n$ such that $z_0 = \Psi \circ \varphi_N(z_0)$. Let $u_0 = \varphi_N(z_0)$, then we have

$$u_0 = \varphi_N(z_0) = \varphi_N \circ \Psi \circ \varphi_N(z_0) = \varphi_N \circ \Psi(u_0)$$

and

$$\Psi(u_0) = \sum_{i=1}^n \psi_i(u_0) e_i = \sum_{j \in \Delta_{J(u_0)}} \psi_j(u_0) e_j \in \Delta_{J(u_0)}$$

where $J(u_0) = \{ j \in \{1, 2, ..., n\} : \psi_j(u_0) \neq 0 \}$ and $\Delta_{J(u_0)} = co \{ e_j : j \in J(u_0) \}.$

From equation (1), we know that, $u_0 \in (X \setminus M_j) \cap \varphi_N(\Delta_n), \forall j \in J(u_0)$, then we have

$$u_0 \notin M_j, \forall j \in J(u_0) \tag{2}$$

Since $F = \{x_1, x_2, ..., x_n\} \in \langle X \rangle$ is a R-KKM selection for $M_1, M_2, ..., M_n$, therefore, we have $\varphi_N(\Delta_{J(u_0)}) \subset \bigcup_{j \in J(u_0)} M_j$. Then we have $u_0 = \varphi_N(z_0) \in \varphi_N(\Delta_{J(u_0)}) \subset \bigcup_{j \in J(u_0)} M_j$.

Thus, there exists j_0 such that $u_0 \in M_{j_0}$ which contradicts the equation (2). Therefore, we have $\bigcap_{i=1}^n M_i \neq \emptyset$.

Remark 3.1. Theorem 3.1 generalizes Theorem 2.1 of [3] from G-H-space to GFC-space and from closed subsets to compact closed subsets.

Theorem3.2. Let (X, Y, Φ) be a GFC-space, and $M_1, M_2, ..., M_n$ compact open subsets of X. Suppose that $F = \{x_1, x_2, ..., x_n\} \in \langle X \rangle$ is a R-KKM selection for $M_1, M_2, ..., M_n$. Then we have $\bigcap_{i=1}^n M_i \neq \emptyset$.

Proof. Suppose $\bigcap_{i=1}^{n} M_i = \emptyset$, then we have $\varphi_N(\Delta_n) \cap (\bigcap_{i=1}^{n} M_i) = \emptyset$. It follows that $\varphi_N(\Delta_n) = \bigcup_{i=1}^{n} (\varphi_N(\Delta_n) \setminus (M_i \cap \varphi_N(\Delta_n)))$

Since $\varphi_N(\Delta_n)$ is compact in Y, M_i is a compact open subset in X, then for each $i \in \{1, 2, ..., n\}, \varphi_N(\Delta_n) \cap M_i$ is open in $\varphi_N(\Delta_n)$.

For each $z \in \Delta_n$, let $I(z) = \{i \in \{1, 2, ..., n\} : \varphi_N(z) \notin M_i\}$ and $S(z) = co(\{e_i : i \in I(z)\})$. If for some $z \in \Delta_n$, $I(z) = \emptyset$. Then we have $\varphi_N(z) \in M_i$ for all

53

 $i \in \{1, 2, ..., n\}$ which contradicts the assumption $\varphi_N(\Delta_n) \cap (\bigcap_{i=1}^n M_i) = \emptyset$.

Therefore we can assume that $I(z) \neq \emptyset$ for each $z \in \Delta_n$ and hence S(z) is a nonempty compact subset of Δ_n for each $z \in \Delta_n$. convex Since $\bigcup_{i \notin I(z)} (\varphi_N(\Delta_n) \setminus (M_i \cap \varphi_N(\Delta_n))) \text{ is closed}$ in $\varphi_N(\Delta_n),$ we have that $U = \Delta_n \setminus \varphi_n^{-1}(\bigcup_{i \notin I(z)} (\varphi_N(\Delta_n) \setminus (M_i \cap \varphi_N(\Delta_n))))$ is an open neighborhood of z in Δ_n . For each $z' \in U$, we have $\varphi_N(z') \subset M_i$ for all $i \notin I(z)$ and hence $I(z') \subset I(z)$. It follows that $S(z') \subset S(z)$ for all $z' \in U$.

This shows that $S: \Delta_n \to 2^{\Delta_n}$ is an upper semicontinuous set-valued mapping with nonempty compact convex values. By the Kakutani fixed point theorem, there exists a $z_0 \in \Delta_n$ such that $z_0 \in S(z_0)$. Note that $F = \{x_1, x_2, ..., x_n\} \in \langle X \rangle$ is a R-KKM selection for $M_1, M_2, ..., M_n$, then we have $\varphi_N(z_0) \in \varphi_N(S(z_0)) \subset \bigcup_{i \in I(z_0)} M_i$. Hence there exists a $i_0 \in I(z_0)$ such that $\varphi_N(z_0) \in M_{i_0}$. By the definition of $I(z_0)$, we have $\varphi_N(z_0) \notin M_i$ for each $i \in I(z_0)$, which is a contradiction. Therefore $\bigcap_{i=1}^n M_i \neq \emptyset$.

Remark 3.2. Theorem 3.2 proves that Theorem 3.1 also holds under the condition of compactly opening.

Theorem3.3.Let (X, Y, Φ) be a GFC-space, $T: Y \to 2^X \setminus \{\emptyset\}$ be a set-valued mapping with compactly open values. If T is a R-KKM mapping, then $\bigcap_{y \in Y} T(y) \neq \emptyset$.

Proof. Since $T: Y \to 2^X \setminus \{\emptyset\}$ be a setvalued mapping with compactly open values, then for each $\{y_1, y_2, ..., y_n\} \in \langle Y \rangle$, there exists $\{x_1, x_2, ..., x_n\} \in \langle X \rangle$ such that for each $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$, we have $\varphi_N(\Delta_k) \subset \bigcup_{j=1}^k T(y_{i_j})$. It is also known that T(y) is compactly closed, then by Theorem 2.1 we have $\bigcap_{y \in Y} T(y) \neq \emptyset$.

Remark 3.3. Theorem 3.3 generalizes Theorem 2.2 in [3] from G-H-space to GFC-space and from closed-valued mapping to compactly closedvalued mapping by removing the assumption of compactness of the space (X, Y, Φ) .

Theorem3.4. Let (X, Y, Φ) be a GFC-space and $S, T : X \to 2^X$ two multivalued mappings such that:

(i) Tx is closed and $Sx \subset Tx$ for all $x \in X$;

(ii) $x \in Sx$ for all $x \in X$;

Then $\bigcap_{x \in X} T(x) \neq \emptyset$.

Proof. By Theorem 3.3, it is only necessary to prove that $T: X \to 2^X$ is a R-KKM mapping. Suppose $T: X \to 2^X$ is not a R-KKM mapping, there exists $\{x_1, x_2, ..., x_n\} \in \langle X \rangle$ such that $\varphi_N(\Delta_k) \not\subset \bigcup_{j=1}^k T(x_{i_j})$. There exists $u \in \varphi_N(\Delta_k)$ such that for each $j \in \{1, 2, ..., k\}$, we have $u \notin T(x_{i_j})$. Therefore $x_{i_j} \in T^*(u)$. Since $Sx \subset Tx$ for all $x \in X$, then we have $T^*(u) \subset S^*(u), \forall x \in X$. Therefore $x_{i_j} \in T^*(u) \subset S^*(u), \forall j \in \{1, 2, ..., k\}$. Then we have $u \notin S(x_{i_j})$ for all $j \in \{1, 2, ..., k\}$ which contradicts condition (ii). Therefore $\bigcap_{x \in X} T(x) \neq \emptyset$.

Remark3.4. Theorem 3.4 generalizes Theorem 2.3 in [3] from G-H-space to GFC-space and from closed-valued mappings to compactly closed-valued mappings by removing the compactness assumption of the space (X, Y, Φ) and the convexity assumption of S^*x .

Theorem3.5.Let (X, Y, Φ) be a GFC-space and $S, T : X \to 2^X$ two multivalued mappings such that:

(i) $Sx \subset Tx$ for all $x \in X$;

(ii) $S^{-1}y$ is a compactly open subset in X;

Then there exists $x_0 \in X$ such that $x_0 \in Tx_0$.

Proof. Assume that the conclusion is not valid, then we have $x \notin Tx$ for each $x \in X$. Therefore

© 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

54

 $x \in T^*x$, $\forall x \in X$. From condition (ii), it follows that S^*y is a compactly open subset in X. Since $Sx \subset Tx$, we have $T^*y \subset S^*y$ for each $y \in X$. From Theorem 3.4, we have $\bigcap_{x \in X} S^*x \neq \emptyset$. Let $u \in \bigcap_{x \in X} S^*x$, then $u \in S^*x$. Therefore $x \notin S(u)$, $\forall x \in X$, then we have $S(u) = \emptyset$. This contradicts the definition of mapping S. Therefore, there exists $x_0 \in X$ such that $x_0 \in Tx_0$.

Remark 3.5. Theorem 3.5 generalizes Theorem 2.4 in [3] from G-H-space to GFC-space and from open-valuedness of the inverse map to compactly open-valuedness of the inverse map, removing the assumption of compactness of the space (X, Y, Φ) and

the assumption of convexity of Tx.

REFERENCE参考文献

- 1. Horvath, C. (1987). Some results on multivalued mappings and inequalities without convexity[J]. *Pure and Appl. Math. Series*, 106: 99-106.
- 2. Park, S., & Kim, H. (1997). Foundations of the KKM theory on generalized convex spaces. *Journal of Mathematical Analysis and Applications*, 209(2), 551-571.
- 3. Verma, R. U. (1999). Some results on R-KKM mappings and R-KKM selections and their applications. *Journal of Mathematical Analysis and Applications*, 232(2), 428-433.
- 4. Verma, R. U. (1999). GH-KKM type theorems and their applications to a new class of minimax inequalities. *Computers & Mathematics with Applications*, 37(8), 45-48.
- 5. Verma, R. U. (1999). Generalized GH-convexity and minimax theorems in GH-spaces. *Computers & Mathematics with Applications*, 38(1), 13-18.
- 6. Verma, R. U. (1999). Relative KKM type selection theorems and their applications. *Applied*

mathematics letters, 12(7), 39-43.

- Verma, R. U. (1999). On a generalized class of minimax inequalities. *Journal of mathematical* analysis and applications, 240(2), 361-366.
- 8. Verma, R. U. (1999). Role of generalized KKM type selections in a class of minimax inequalities. *Applied mathematics letters*, *12*(4), 71-74.
- Ben-El-Mechaiekh, H., Chebbi, S., Florenzano, M., & Llinares, J. V. (1998). Abstract convexity and fixed points. *Journal of Mathematical Analysis and Applications*, 222(1), 138-150.
- Ding, X. P. (2005). Maximal element theorems in product FC-spaces and generalized games. *Journal* of Mathematical Analysis and Applications, 305(1), 29-42.
- Hai, N. X., Khanh, P. Q., & Quan, N. H. (2009). Some existence theorems in nonlinear analysis for mappings on GFC-spaces and applications. *Nonlinear Analysis: Theory, Methods* & *Applications*, 71(12), 6170-6181.
- Khanh, P. Q., Quan, N. H., & Yao, J. C. (2009). Generalized KKM-type theorems in GFC-spaces and applications. *Nonlinear Analysis: Theory, Methods & Applications*, 71(3-4), 1227-1234.
- 方敏,丁协平. (2003). L-凸空间内的广义 LR-KKM 型定理及应用[J]. 四川师范大学学报: 自然 科学版, 26(5): 461-463.
- Ding, X. P., Liou, Y. C., & Yao, J. C. (2005). Generalized R-KKM type theorems in topological spaces with applications. *Applied mathematics letters*, 18(12), 1345-1350.
- 15. Ding, X. P. (2002). Generalized L-KKM type theorems in L-convex spaces with applications. *Computers & Mathematics with Applications*, 43(10-11), 1249-1256.
- 16. 邓方平, & 丁协平. (2005). 拓扑空间中的 KKM 选择与 KKM 定理. 四川师范大学学报: 自然科 学版, 28(4), 402-404.

 $\ensuremath{\mathbb{O}}$ 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India