Abbreviated Key Title: Sch J Phys Math Stat ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online) Journal homepage: https://saspublishers.com

Natural Radioactivity Levels and Some Elements Concentrations in Bauxite Ore Deposit of Az Zobirah Mine-Al Qassim - Saudi Arabia

Safia H. Q. Hamidalddin¹

¹Physics Department, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia

DOI: 10.36347/sjpms.2022.v09i04.006

| **Received:** 13.04.2022 | **Accepted:** 24.05.2022 | **Published:** 29.05.2022

*Corresponding author: Safia H. Q. Hamidalddin Physics Department, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia

Abstract

Original Research Article

The activity concentrations of (NORM) radionuclides ²²⁶Ra, ²³²Th and ⁴⁰K were determined in Bauxite of AzZobirah mine-AlQassim Saudi Arabia using High Pure Germanium detector (HPGe). Bauxite samples concentrations ranged from 72.40 ± 0.07 to 227.21 ± 0.14 from 119.70 ± 0.20 to 310.30 ± 0.10 and from 81.00 ± 0.11 to 119.00 ± 0.01 and the average were 67.44, 171.77 and 96.94 Bq/ kg for ²²⁶Ra, ²³²Th and ⁴⁰K respectively., respectively. ²²⁶Ra and ²³²Th average values are higher than the world value 50 and 50 Bq/Kg, while for ⁴⁰K average is less than the world value 500 ²²⁶ Bq/ kg. ²²⁶Ra concentrations are less than of ²³²Th, this variations refer to the change and nature in the geological processes in this area such as the ²²⁶Ra being more soluble in water. The radiological Radiation hazard indices (Raeq), (D), (AEDE), (H_{ex}), (H_{in}) were found higher than the world values. By AA Analysis, The concentration average values for nine elements (Al, Ca, Fe, K, Mg, Bi, Pb, Th, U) showed that, the major element is Al (20.50%), minor element is Fe (5.34%), trace elements Ca, K and Mg are (0.05, 0.04 and 0.43) % respectively. Bi is not detected, Pb, Th and U are trace elements with low concentration values (0.0006, 0.0043 and 0.0027) respectively. Bauxite has been most used in industry for producing aluminium. So, the level of pollution, the risk of the activity concentrations of (NORM) and the unacceptable limits levels of health hazard due to natural radioactivity in this area must be taken into consideration. The data will be saved as database to control the possible change in the environment area due to human activities in future.

Keywords: Bauxite ores, γ -ray spectrometry, Atomic Absorption Spectroscopy, bauxite residues hazards. Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1.INTRODUCTION

Bauxite is a rock formed from a reddish clay material called laterite soil (a soil and a rock type rich in iron and aluminium), it is most found in tropical or subtropical regions (usually found near the surface of terrain). Bauxite is primarily comprised of aluminium oxide compounds (alumina, Al2O3.), silica (Silicon dioxide- SiO_2), iron oxides and titanium dioxide (TiO_2). It is a rock composed when laterite soils are leached of silica and other soluble materials in a wet tropical or subtropical climate (IDA VALETON, 1972). Bauxite does not have a specific composition. It is a mixture of hydrous aluminium oxides, aluminium hydroxides, clay minerals, and insoluble materials (quartz, hematite, magnetite, siderite, and goethite). Also, aluminum minerals in bauxite is gibbsite (Al(OH)₃), boehimate (AlO (OH)) (Hobart M. King 2018). Approximately 28000(Mt) million metric tons of Bauxite word resources are estimated (Allison Britt, 2017), 90% of the world bauxite production is used for making alumina (A1₂O₃), (SAM H et al., 1936). Bauxite

deposits originated from weathering or soil formation with an abundant of aluminium. Bauxite is used in the abrasives, chemical, and refractory industries. The igneous, metamorphic, or sedimentary rocks are the parent rocks of Bauxite (Kusuma K. N., 2012). Bauxite refineries produce alumina (aluminium oxide), which is used to create aluminum metal. Bauxite is also used to manufacture other industrial products, such as abrasives, cement and chemicals. The most frequentlyoccurring radionuclides (238U- 226Ra, 232Th and 40k) and their decay progenies are found in bauxite and its processing residuals. These long-lived radioactive material (NORM) have been receiving considerable global attention because of their potential long-term risks (Cuccia V et al., 2011). They have become concentrated and exposed not only to the environment but also to human workers in manufacturers, water suppliers, or mines, so the radiological impact resulting from bauxite or red mud are studied and it is important to measure the radionuclides concentrations to determine the health effect (Adel G.E., Abbady et al.,

Citation: Safia H. O. Hamidalddin. Natural Radioactivity Levels and Some Elements Concentrations in Bauxite Ore 62 Deposit of Az Zobirah Mine-Al Qassim - Saudi Arabia. Sch J Phys Math Stat, 2022 May 9(4): 62-68.

2005). This study aims to measure the natural radioactivity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in the bauxite ores deposit site in Az Zabirah mine using two techniques: (γ -ray spectrometry) to calculate the radiation hazard parameters and estimate the radiological parameters risk, and (Atomic Absorption Spectroscopy) to evaluate the chemical elements concentrations. Results will help establishing a guideline for the environment protection from bauxite residues hazards.

2. MATERIAL AND METHODS

2.1. Study area

Mining bauxite: Bauxite is normally found near the surface of land and, it can be strip-mined economically and for environmental conservation efforts, the land is cleared before the mining by storing the topsoil, so it can be replaced after the bauxite is broken up and taken out of the mine to get the aluminium to the a refinery. When mining is completed, the topsoil is replaced and the area undergoes a restoration process (The Aluminium association). An average of 80 percent of the land mined for bauxite is returned to its native ecosystem. Topsoil from the mining site is stored so it can be replaced during the rehabilitation process. The Bauxite samples were collected from the study area which is located in the stable shelf in which the marine sedimentary rocks dominate the Arabian Platform (Fig. 1). Bauxite deposits are near Az Zabirah (27° 55' N and 43° 41' E) in the northern part of Saudi Arabia, 180 km to the north of Buraydah (USGS, 2014). The lower boundary of the Az Zabirah bauxite is along an angular unconformity where the Late Cretaceous rocks (Wasia and Aruma formations) overly the clastic sediments of Late Triassic, Early Middle Jurassic, and Early Cretaceous age. According to (A M Gray, 1982) and (A. C. Bowden, 1981), the bauxite profile extends as outcrops for approximately 125 km.

Fig-1 (a): Az Zabirah bauxite deposits (27° 55′ N and 43° 41′ E) AlQassim, Saudi Arabia, (b): Bauxite layer (5-10m) topped with a clay layer (4-5m) and Sand Stone layer (0-4m).

2.2. Sample collection, preparations and measurement

Bauxite samples were collected, crushed, airdried and sieved for homogenizes, then each sample transferred to standard measuring container polyethylene Marinelli beakers. Each container was filled up by samples (0.55Kg), sealed, and kept for two months in order to achieve the radioactive equilibrium between 226 Ra - 222 Rn and their progenies. The gammarays of the samples were measured by high-resolution gamma spectrometer based on a coaxial P- type highpurity germanium (HPGe) detector (Canberra Model number GC2520), with efficiency of 25% and energy resolution of 2 keV FWHM for the 1332 keV line of ⁶⁰Co, and (16k) MCA card with software Gamma (Gennie 2000) was used for Gamma acquisition and data analysis in our nuclear lab Jeddah university. The detector is boarded inside a thick lead shield to reduce the background. Each sample was counted for 28800 s. The background was measured many times at the same conditions of the measurement. The system was calibrated for energy and efficiency (IAEA, 2018). ²²⁶Ra activity concentrations were evaluated using gamma-ray lines of its related isotopes, ²¹⁴Pb (352 keV)

© 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

and ²¹⁴Bi (609.31, 1120.27, 1764.49 keV). For ²³²Th, gamma ray lines of ²¹²Pb (238. 583.1KeV) and ²²⁸Ac (338.42, 911.16, 964.6, 968.97 KeV) were used to measure the activity concentrations. The activity concentrations of ⁴⁰ K were determined by using 1460.8 keV gamma ray line.

2.3 Calculations

2.3.1 Activity concentration

The radionuclide activity concentration in Bq/kg for each gamma ray line was calculated using the equation (Amrani, D., M. Tahtat, 2001):

$$\mathbf{A} = \frac{c}{m\,\beta\,\varepsilon} \quad (1)$$

Where: C is the net peak area of specific gamma ray energy (count per second), m is the mass of the samples in (kg), β is the transition probability of gamma-decay, ε is the detector absolute efficiency at the specific gamma-ray energy.

Exposure to radiation has been defined in terms of the radiological risk indices such as radium equivalent activity Ra_{eq} in Bq/kg which is calculated from equation (UNSCEAR. 1999):

 $Ra_{eq} = CRa + (CTh \times 1.43) + (CK \times 0.077)$ (2)

Where: C_{Ra} , C_{Th} and C_K are the concentrations in Bq/kg dry weight for radium, thorium and potassium respectively.

2.3.2 Absorbed dose rate, Effective dose and external hazard index

The absorbed dose rate (nGy/h) in air at 1 m above the ground surface due to the activity concentrations of the radionuclides 226 Ra, 232 Th and 40 K (Bq/ kg) dry weight was calculated using the equation (UNSCEAR, 2000).

 $D (nGy/h) = 0.462C_{Ra} + 0.604C_{Th} + 0.0417C_{K}$ (3)

Where: C_{Ra} , C_{Th} and C_K are the concentrations in Bq/kg for radium, thorium and potassium respectively. The absorbed doses D (nGy/h) were converted to annual effective dose equivalent D_{eff} (mSv/ y) in air was calculated by (UNSCEAR 2000) using the dose conversion factor of 0.7 Sv/Gy and the outdoor occupancy factor of 0.2 (people spend about 20% of their life outdoor), the Annual Effective Dose (in mSv/y) received by population is calculated by equation:

 $D_{eff} (mSv/y) = D (nGy/h) \times 8,766 h \times 0.7(Sv/Gy) \times 0.2 \times 10^{-6}$ (4)

Where: D (nG/h) is the total air absorbed dose rate in the outdoor. 8,766 h is the number of hours in 1 year. 10^{-6} is conversion factor of nano and milli. To limit the annual external gamma-ray dose to 1.5 Gy for the samples. The internal exposure to ²²²Rn and its radioactive progenies is controlled by the internal hazard index (H_{in}) rise to the emitted gamma rays for each sample, which is calculated by Equation (5) (Veiga R., *et al.*, 2006):

$$H_{in} = C_{Ra} / 185 + C_{TH} / 259 + C_K / 4810 \le 1$$
 (5)

The external hazard index (H_{ex}) due to the emitted gamma rays for each sample is given by the equation (El Aassy, *et al.* 2011):

 $H_{ex} = C_{Ra}/370 + C_{Th}/259 + C_K/4810 \le 1$ (6)

2.3.3. Element concentrations

Atomic absorption is none destructive technique, it is the process which enables to determine an element's presence within a sample and to measures its concentration (Muhammad Akhyar Farrukh, 2011). In this study, atomic absorption spectrometry (AAS) uses for concentrations measurements of the elements Al, Ca, Fe, K, Mg, Bi, Pb, Th, U in Bauxite samples.

3.RESULT AND DISCUSSIONS

3.1. Activity concentrations of ${}^{226}Ra$, ${}^{232}Th$ and ${}^{40}K$ The calculated activity concentrations of ${}^{226}Ra$,

The calculated activity concentrations of ²²⁰Ra, ²³²Th, and ⁴⁰ K, in the bauxite ore deposit samples in Az Zabirah were stated in Table (1). In bauxite samples, the concentrations of ²²⁶Ra and ²³²Th (Bq/ kg) range values were 72.40 ± 0.07 to 227.21 ± 0.14 and 119.70 ± 0.20 to 310.30 ± 0.10) Bq/Kg, the mean activities of ²²⁶Ra and ²³²Th, (Bq/ kg) were (67.44 and 171.77), which they were higher than the recommended reference values (50 and 50), the activity concentration of ⁴⁰K was 81.00 ± 0.11 to 119.00 ± 0.01 and mean was (96.94) (Bq/ kg which is less than the recommended reference value (500). The results show that the concentration values of ²²⁶Ra are less than those of ²³²Th in Az Zabirah. This variations refer to the change and nature in the geological processes in this area such as the ²²⁶Ra being more soluble in water.

Sa. No /	Location		Specific activities (Bq/ kg)					
Discerption.			²²⁶ Ra	²³² Th	⁴⁰ K			
B1/Pink	BZ		72.40±0.07	119.70±0.20	98.00±0.40			
B2/Paige	au	: 27-54	79.30±0.12	136.70±0.13	109.00±0.24			
B3/Brown	li ∧		79.40 ± 0.01	140.30±0.13	110.00±0.30			
B4/Brown	e Sa		84.80 ± 0.13	184.30±0.17	86.30±0.30			
B5/L. Brown	bia		90.20±0.12	198.30±0.12	92.10±0.36			
B6/D. Red	ples layer, Az) 1	9.1	91.43±0.31	168.20 ±0.29	93.20±0.30			
B7/ D. Red			91.76 ±0.06	235.33±030	86.10±0.30			
B8/Paige		4	92.00±0.02	128.70±0.01	119.00±0.01			
B9/ Pink		3 - 42 - 47.3	92.80 ±0.20	148.43±0.10	93.20 ±0.43			
B10/ Paige			93.20±0.11	133.00±0.12	96.00±0.30 ±			
B11/ Paige	Zat		93.80±0.17	144.50±0.03	87.00±0.40			
B12/ Paige	bira		97.80 ± 0.10	307.00 ± 0.13	113.00 ± 0.40			
B13/D. Pink	h		103.30±0.12	218.30±0.10	83.00±0.40			
B14/D. Pink	Mii		110.75±0.11	145.25 ±0.04	96.20 ±0.44			
B15/D. Pink	ne,		161.60 ± 0.11	310.30 ± 0.10	99.50 ± 0.44			
B16/D. Pink			172.75 ± 0.13	259,25 ± 0.02	107.00 ± 0.50			
B17/D .Red			227.21±0.14	213.30±0.23	81.00±0.11			
Danga		72.40±0.07 to	119.70±0.20 to	81.00±0.11to				
Kange			227.21±0.14	310.30 ± 0.10	119.00±0.01			
Average	Average			171.77	96.94			
(UNSCEAR, 2000)			50	50	500			

Table-1: The specific activity concentrations in Bq/kg for Bauxite Samples measured by Gamma Spectroscopy

The activity concentrations of $(^{226}$ Ra, 232 Th, and 40 K) Bq/Kg, in the bauxite ore deposit mine samples(Az Zabirah were shown in Fig.2.. The bauxite concentrations of 226 Ra and 232 Th for all samples were greater than the global values (1.35% and 3.44%)

except potassium 40 K samples (they were much less than the global values by 0.45%). This means that the level of pollution and the risk of the activity concentrations of (NORM) in this area must be taken into consideration.

Fig-2: The specific activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in Bq/kg for Bauxite samples in Az Zabirah Mine Sa. Arabia.

3.2. Radiation hazard indices

The radiological Radiation hazard indices (Radium Equivalent Activity (Raeq) , Absorbed Dose Rate in Air (D) , Annual Effective Dose Equivalent (AEDE), the external hazard index (H_{ex}) , the internal

hazard index (H_{ix}) are important to assess to population who are exposed to these radiation. The different radiation hazard indices in AzZabirah mine were calculated from the measured activity concentrations of three main radionuclides ²²⁶Ra, ²³²Th, and ⁴⁰ K in the

Was 78.2 mSv/y, this value was higher than the safe limit of 1 mSv/y by 78.20 %. The average values of external index (Hex) and he internal hazard index (Hin) were 1.2 and 1.4, these average values slightly higher than the recommended average \leq 1 by (UNSCREAN, 2000).

Table-2: The values of radium equivalent,	absorbed dose,	effective dose,	external hazard a	nd internal	index for
	Bauxite Sa	mples.			

	Radiation hazards								
Sample No.	Radium equivalent Ra _{eq} (Bq/Kg)	Absorbed dose D (nGy/h)	Annual effective dose D _{eff} (mSv/y)	External index (H _{ex})	Internal index (H _{in})				
B1	429.83	109.70	48.41	0.68	0.88				
B2	487.05	123.71	54.32	0.77	0.98				
B3	497.60	126.04	55.18	0.78	1.09				
B4	625.19	139.48	66.67	0.96	1.30				
B5	671.52	166.02	71.44	1.03	1.27				
B6	367.15	147.70	64.81	0.92	1.16				
B7	778.06	189.50	80.36	1.18	1.54				
B8	478.41	124.58	56.10	0.77	1.02				
B9	531.58	136.09	60.70	0.84	1.09				
B10	488.37	126.78	57.28	0.79	1.04				
B11	720.47	219.22	116.04	1.37	2.16				
B12	992.00	239.11	98.70	1.47	1.74				
B13	740.42	183.68	79.65	1.14	1.42				
B14	541.22	141.97	103.00	0.88	1.18				
B15	1064.60	267.84	94.92	1.66	2.09				
B16	931.00	239.93	108.69	1.50	1.96				
B17	759.42	233.07	113.18	1.45	2.07				
B. average	653.2	171.4	78.2	1.1	1.4				
UNSCEAR	370	65	1	≤ <u>1</u>	≤1				

The analysis shows wide distributions of natural radionuclides in the samples, which may be due to the variety of geological formations in Bauxite deposit. Also, the levels of health hazard due to natural radioactivity were found to be higher than the acceptable limits. The data will be saved as database to control the possible change in the environment area due to human activities in future.

3.3. Elements Concentrations for B in (%) and in (ppm) measured by AAS.

Table (3). lists the results of the measurements for 17 Bauxite samples for nine elements (Al, Ca, Fe, K, Mg, Bi, Pb, Th, U) by atomic absorption spectroscopy (AAS). Results show that in bauxite samples, the major element is Al %, its concentrations were ranged from 19.07 % B15 to 27.05 % B1with Average value 20.50 %. The minor element is Fe %, its concentrations were ranged from 0.51% B7 to 15.51% B14 with average value 5.34 %. Trace elements are Ca, K and Mg respectively, their concentration values were ranged from 026-0.73, 0.01-0.09 and 0.13-1.64 % and the average value 0.05, 0.04 and 0.43 % respectively. Bi is not detected, while Pb, Th and U have very low concentration values, they were ranged 0.0003-0.0012, 0.0027-0.0077 and 0.0014-0.0042 %, and the average values 0.0006, 0.0043 and 0.0027 respectively. Bauxite ore contains 15%-25 Al (S.K. Haldar, 2020), Az Zabirah Mine contains 20.50 Al %, this percentage gives a promising outcome for economically mine extracting aluminum from the this mine. Fe is minor element with average 5.34%. Ca, K, Mg are trace elements and Pb, Th and U have very low contents.

integration of the second seco												
Element	Al	Fe	Ca	K	Mg	Bi	Pb	1	Th	-	U	
Units	%	%	%	%	%	ppm	%	ppm	%	ppm	%	ppm
DL.	0.02	0.02	0.02	0.01	0.01	1.00	0.0002	2.00	0.0001	1.00	0.0005	5.00
B1	19.52	4.39	0.30	0.04	0.050	ND	0.0021	20.71	0.0035	33.47	0.0005	5.14
B2	19.08	4.33	0.28	0.02	0.038	ND	0.0029	29.28	0.0037	36.92	0.0003	5.33
B3	19.28	3.19	0.19	0.05	0.051	ND	0.0036	35.47	0.0077	77.03	0.0012	12.16
B4	19.14	4.02	0.36	0.03	0.049	ND	0.0020	19.05	0.0035	35.18	0.0005	5.44
B5	19.52	4.39	0.30	0.04	0.050	ND	0.0021	20.71	0.0034	33.47	0.0005	5.14
B6	23.97	8.30	0.15	0.02	0.036	ND	0.0042	41.64	0.0059	58.76	0.0009	9.50
B7	19.57	0.51	0.62	0.03	0.048	ND	0.0032	32.00	0.0043	43.22	0.0006	6.14
B8	19.08	4.33	0.28	0.02	0.038	ND	0.0030	29.28	0.0037	36.92	0.0005	5.33
B9	20.27	0.52	0.13	0.01	0.061	ND	0.0024	24.13	0.0042	42.00	0.0006	5.53
B10	24.08	14.80	1.64	0.02	0.073	ND	0.0014	24.17	0.0056	55.45	0.0010	9.57
B11	20.23	4.54	0.32	0.09	0.029	ND	0.0030	30.05	0.0027	26.56	ND	ND
B12	20.73	5.49	0.68	0.09	0.026	ND	0.0021	20.75	0.0028	27.81	ND	ND
B13	19.14	4.02	0.36	0.03	0.049	ND	0.0019	19.05	0.0035	35.18	0.0005	5.44
B14	27.05	15.51	0.80	0.02	0.069	ND	0.0041	41.47	0.0071	70.96	0.0012	12.12
B15	19.07	3.96	0.23	0.04	0.034	ND	0.0027	27.09	0.0037	37.13	0.0005	5.08
B16	19.14	4.02	0.36	0.03	0.049	ND	0.0019	19.05	0.0035	35.18	0.0005	5.44
B17	19.52	4.39	0.30	0.04	0.050	ND	0.0020	20.71	0.0035	33.47	0.0005	5.14
Reange	19.07-	0.51-	0.13-	0.01-	026-	ND	0.0014-		0.0027-		0.0003-	
incunge	27.05	15.51	1.64	0.09	0.73	- ,2-	0.0042		0.0077		0.0012	
Average	20.50	5.34	0.43	0.04	0.05	ND	0.0027		0.0043		0.0006	

Table-3: Elements Concentrations of Al, Ca, Fe, K, Mg in (%) and of Bi, Pb, Th, U in (% ppm) for Bauxite samples measured by AAS.

 Table-4: Comparison of activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K Bq/Kg in bauxite samples for present study with previous study reported from countries of the world

Country	Area		activity concentrations (²²⁶ Ra ²³² Th		References
Camroon	Volcanin area	14	30	103	M. Ngachin et al. 2008
Syria	36°5-2°12`E 32°-37° 18`N	19	24	336	Al Marsi et al. 2006
Turkey	7 Geographical regions of Turkey	28	33	448.5	Turhan et al. 2012
Portugal	Uranium Mining	200	91	-	Carvalho et al. 2007
Eastern Germany	Ronneburg	370	45	620	Winkelmann et al. 2001
Brazil	Rio Grande do Norte	29.2	47.8	704	Malanca 1996
Saudi Arabia Az Zabirah		67.44	171.77	96.94	Present Work
Word average	-	33	45	422	UNSCEER 2008

4. CONCLUSION

In bauxite samples in Az Zabirah, the average activities of 226 Ra and 232 Th, (Bq/ kg) were higher than the recommended reference values, while the average activity of ⁴⁰K (244.35) was less than the recommended reference value. Also, the results show that the concentration values of ²²⁶Ra were less than those of ²³²Th. This variations refer to the change and nature in the geological processes in this area such as the ²²⁶Ra being more soluble in water. The mean values of radiological Radiation hazard indices Raeq Bq/Kg, D nGy/h, AEDE mSv/y, Hex and Hix in Bauxite samples were higher than the worldwide values. This means that the level of pollution and the risk of the activity concentrations of (NORM) and Radiation hazard indices in this area must be taken into consideration. The data will be saved as database to control the possible change in the environment area due to human activities in future and to determine background radiation level in order to evaluate the health hazards

resulting. Atomic absorption spectrometry (AAS) uses for concentrations measurements of the nine elements Al, Ca, Fe, K, Mg, Bi, Pb, Th, U in Bauxite samples. Results show that, major element is Al, minor element is Fe, and Trace elements are (Ca, K and Mg) respectively. Bi is not detected, while (Pb, Th and U) have very low concentration values. Az-Zabirah Mine contains (20.50) % Al, this percentage gives a promising outcome for economically mine extracting aluminium.

ACKNOWLEDGEMENTS

The author is indebted to the Saudi Geological Survey (SGS) for supplying the geological samples, also thanks for their help during the measurements by Atomic Absorption Techniques.

REFERENCES

- 1. IDA, Valeton. (1972). Bauxite, volume 1, 1st edition, Elsevier in Amsterdam, New York.
- Hobart, M. King. (2018). Bauxite, Geology.com.Allison Britt, 2017, Geoscience Australia, Canberra, Australia.
- SAM, H. (1936). Catalogue of the Public Documents, United States. Superintendent of Documents.
- Kusuma, K. N. (2012). Spectral pathways for effective delineation of high-grade bauxites: a case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data, International Journal of Remote Sensing.
- Cuccia, V. (2011). An alternative way to determine the size distribution of airborne particulate matter, Atmospheric Research (ATMOS RES), Publisher: Elsevier.
- Abbady, A. G., Uosif, M. A. M., & El-Taher, A. (2005). Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt. *Journal of Environmental radioactivity*, 84(1), 65-78.
- 7. The Aluminium association, The Aluminum Association, 1400 Crystal Drive, Suite 430 Arlington, VA22202.
- USGS. (2014). US geological survey: http://minerals.usgs.gov/minerals/ pubs/commodity/bauxite/index. Html #my.
- 9. A M Gray. (1982). Inequalities in health. The Black Report: a summary and comment, *12*(3); 349-80., PMID: 7118327.
- 10. Bowden, A. C. (1981). Thermodynamic aspects of glycolysis, University of Birmingham U K.
- IAEA. (2018). Radiation Protection of the Public and the Environment, AEA Safety Standards Series No. GSG-8, STI/PUB/1781 978-92-0-102517-3.
- Amrani, D., M. Tahtat. (2001). Natural radioactivity in Algerian building materials. Applied Radiation and Isotopes, 54: 687-689.
- UNSCEAR. (1999). United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiations. United Nations, New York.
- 14. UNSCEAR. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, Vol. I, UN Report to the Gen-eral Assembly, New York.
- Veiga, R., Sanches, N., Anjos, R. M., Macario, K., Bastos, J., Iguatemy, M., ... & Umisedo, N. K. (2006). Measurement of natural radioactivity in

Brazilian beach sands. *Radiation measurements*, *41*(2), 189-196.

- 16. El Aassy, I., El Galy, M., Nada, A., El Feky, M., Abd El Maksoud, T., Talaat, S., & Ibrahim, E. (2011). Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt. *Journal of Radioanalytical and Nuclear Chemistry*, 289(1), 173-184.
- 17. Muhammad Akhyar Farrukh. (2011). Atomic absorption spectroscopy, Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia.
- Haldar, S.K. (2020). In Introduction to Mineralogy and Petrology (Second Edition), Book ISBN: 9780323851367, Paperback ISBN: 9780128205853, Imprint: Elsevier.
- 19. Haldar, S.K. (2020). In Introduction to Mineralogy and Petrology (Second Edition), 2020.
- Ngachin, M., Garavaglia, M., Giovani, C., Njock, M. K., & Nourreddine, A. (2008). Radioactivity level and soil radon measurement of a volcanic area in Cameroon. *Journal of environmental radioactivity*, 99(7), 1056-1060.
- Al-Masri, M. S., Amin, Y., Hassan, M., Ibrahim, S., & Khalili, H. S. (2006). External gammaradiation dose to Syrian population based on the measurement of gamma-emitters in soils. *Journal* of radioanalytical and nuclear chemistry, 267(2), 337-343.
- Turhan, Ş., Köse, A., Varinlioğlu, A., Şahin, N. K., Arıkan, I., Oğuz, F., ... & Özdemir, T. (2012). Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. *Geoderma*, 187, 117-124.
- Carvalho, F. P., Oliveira, J. M., Lopes, I., & Batista, A. (2007). Radionuclides from past uranium mining in rivers of Portugal. *Journal of environmental radioactivity*, 98(3), 298-314.
- Winkelmann, I., Thomas, M., & Vogl, K. (2001). Aerial measurements on uranium ore mining, milling and processing areas in Germany. *Journal* of Environmental Radioactivity, 53(3), 301-311.
- Malanca, A., Gaidolfi, L., Pessina, V., & Dallara, G. (1996). Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). *Journal of environmental radioactivity*, 30(1), 55-67.
- 26. Radiation report to the general assembly. AnnexB: exposures of the public and workers from various sources ofradiation Uosif MAM. (2011). Specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from building materials commonly used in Upper Egypt. SDU J Sci, 6(2); 120–126.