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Abstract  Review Article 
 

The structure of the nullnorms are the basis for the study of nullnorms. This paper presents two concrete methods to 

construct nullnorms via triangular subconorms (triangular subnorms) and triangular norms (triangular conorms) on 

bounded lattices, then gets two constructions of nullnorms on bounded lattices via triangular subconorms (triangular 

subnorms) and triangular norms (triangular conorms). 
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1. INTRODUCTION 
The concept of nullnorm on unit interval 

 0,1  was introduced by Calvo [1]. From a theoretical 

point of view, nullnorm is important. Meanwhile, it is 

also widely used in many fields, such as expert systems, 

fuzzy quantifiers, neural networks, fuzzy logic [2]. 

 

Since bounded lattices [3] are more general 

than unit intervals [2-9], most studies of nullnorms 

focus on bounded lattices [10-12]. Based on the 

existence of t-norms and t-conorms on bounded lattices, 

Karaçal et al. [10] defined nullnorms on bounded 

lattices and proposed three construction methods of 

nullnorms on bounded lattices with an arbitrary zero 

element \{0,1}a L . Later, some construction 

methods of nullnorms on bounded lattices were also 

proposed by Ertuğr et al., [11, 19, 20]. For the first 

time, Xie, Ji [18] constructed nullnorms via triangular 

subconorms (triangular subnorms) on bounded lattices. 

 

In order to complete the structure of nullnorms 

on bounded lattices, two concrete methods to construct 

nullnorms via triangular subconorms (triangular 

subnorms) and triangular norms (triangular conorms) on 

bounded lattices are presented in this paper. 

 

2. Preliminaries 

In this section, we will recall some basic 

definitions and theorems which will be applied to this 

paper. 

 

Definition 2.1.[13] A lattice  ,L   is bounded if it 

has top and bottom elements, which are written as 1  

and 0 , respectively; that is, two elements 0,1 L  

exist such that 0 1x   for all x L . 

 

Throughout this paper, unless stated otherwise, 

we denote L  as a bounded lattice with the top and 

bottom elements 1  and 0 , respectively. 

 

Definition 2.2.[13] Given a bounded lattice ( , ,0,1)L   

and ,a b L , a b , a subset  ,a b  of L  is defined 

as  [ , ]a b x L a x b     . Similarly, denote 

[ , )a b    x L a x b   ,  ( , ]a b x L a x b     

and  ( , )a b x L a x b    . If a  and b  are 

incomparable, we use the notation a b . The set of all 

elements which are incomparable with a  are denoted 

by aI . 

 

Definition 2.3.[14] Let ( , ,0,1)L   be a bounded 

lattice.  

(1) An operation 
2:T L L  is called a triangular 

norm (t-norm for short) if it is commutative, 

associative, increasing with respect to both 

variables and has the neutral element 1 L  such 

that ( ,1)T x x  for all x L . 

https://saspublishers.com/sjpms/
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(2) An operation 
2:S L L  is called a triangular 

conorm (t-conorm for short) if it is commutative, 

associative, increasing with respect to both 

variables and has the neutral element 0 L  such 

that ( ,0)S x x  for all x L . 

 

Definition 2.4.[15] Let ( , ,0,1)L   be a bounded 

lattice. A commutative, associative, non-decreasing in 

each variable function 
2:V L L  is called a 

nullnorm if an element a L  exists such that 

( ,0)V x x  for all x a  and ( ,1)V x x  for all 

x a .  

 

It is easy to see that ( , )V x a a  for all x L , thus 

a  is the zero element for V . 

 

Theorem 2.1.[16] Let ( , ,0,1)L   be a bounded lattice 

and 
2:V L L be a nullnorm on L  with the zero 

element a . Then,  

(1) 2

2

[0, ]
:[0, ] [0, ]

a
V a a  is a t-conorm on [0, ]a ; 

(2) 2

2

[ ,1]
:[ ,1] [ ,1]

a
V a a  is a t-norm on [ ,1]a . 

 

Definition 2.5.[14] Let ( , ,0,1)L   be a bounded 

lattice.  

(1) An operation 
2:F L L  is called a t-subnorm 

on L  if it is commutative, associative, increasing 

with respect to both variables and 

( , )F x y x y   for all ,x y L . 

(2) An operation 
2:R L L  is called a t-subconorm 

on L  if it is commutative, associative, increasing 

with respect to both variables and 

( , )R x y x y   for all ,x y L . 

 

Theorem 2.2.[17] Let ( , ,0,1)L   be a bounded lattice, 

\{0,1}a L , S  is a t-conorm on [0, ]a , and T  is a 

t-norm on [ ,1]a .Then, the functions 2, :S T

T SV V L L  

can be defined as: 

 

 

   

2

2

( , )                   ( , ) 0,

( , )                   ( , ) ,1

( , )       ( , ) 0, 0,

                             otherwise

S

T

a a a a

S x y x y a

T x y x y a
V

S x a y a x y a I I a I I

a

 

 

 
      

 ,

 

 

 

   

2

2

( , )                   ( , ) 0,

( , )                   ( , ) ,1

( , )       ( , ) ,1 ,1

                            otherwise

T

S

a a a a

S x y x y a

T x y x y a
V

T x a y a x y a I I a I I

a

 

 

 
      

 ，

 

And they are nullnorms on L  with zero element a . 

 

In order to reduce the complexity in the proof of associativity, we introduce the following theorem. 

 

Theorem 2.3.[21] Let S  be a nonempty set and , , ,A B C D  be subsets of S . Let H  be a commutative binary 

operation on S . Then H  is associative on A B C D  both of the following statements hold: 

(1)    ( , ), , ( , )H H x y z H x H y z  for all      ( , , ) , , , , , ,x y z A A A B B B C C C

             , , , , , , , , , , , , , , ,D D D A A B A B B A A C A C C A A D A D D

           , , , , , , , , , , , ,B B C B C C B B D B D D C C D C D D . 

(2)      ( , ), , ( , ) ( , ),H H x y z H x H y z H H x z y   for all  ( , , ) , ,x y z A B C

     , , , , , ,A B D A C D B C D . 

 

3. New Constructions of Nullnorms on Bounded Lattices 

In this section, we will recall some basic definitions and theorems which will be applied to this paper.  
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Theorem 3.1. Let ( , ,0,1)L   be a bounded lattice, \{0,1}a L , R  is a t-subconorm on [0, ]a , and T  is a t-norm 

on [ ,1]a .Then, the function 
2:R

TV L L  can be defined as: 

 

      

 

       

2

2

( , )                  ( , ) 0,

                      ( , ) 0 0, 0, 0

( , )                   ( , ) ,1

    ( , ) 0, 0,

a                             otherwise

R

T

a a a a

R x y x y a

x y x y a a

V T x y x y a

x a y a x y a I I a I I

 

    



 


      


，



 

And it is nullnorm on L  with zero element a , if and only if “ 0x a   for all ax I ”. 

 

Proof. Sufficiency: The commutativity of 
R

TV  can be proven directly based on its description. Similarly, we can express 

 ,0R

TV x x  for all  0,x a  and  ,1R

TV x x for all  ,1x a . Now, we only need to proof monotonicity and 

associativity. 

 

Monotonicity: Let us prove that if x y , then ( , ) ( , )R R

T TV x z V y z  for all z L . 

1. It is obvious that ( , ) ( , )R R

T TV x z V y z , if 0x  . 

2.  0,x a  

2.1.  0,y a  

 2.1.1. 0z    

( , ) ( , )R R

T TV x z x y V y z    

2.1.2.  0,z a  

( , ) ( , ) ( , ) ( , )R R

T TV x z R x z R y z V y z    

2.1.3.  ,1z a  

   
( , ) ( , )R R

T TV x z a V y z 
 

2.1.4. az I  

   
       ( , ) ( , )R R

T TV x z x a z a x y y a z a V y z          
 

2.2.  ,1y a  

2.2.1. 0z    

   
( , ) ( , )R R

T TV x z x a V y z  
 

2.2.2.  0,z a  

   
( , ) ( , ) ( , )R R

T TV x z R x z a V y z  
 

2.2.3.  ,1z a  

   
( , ) ( , ) ( , )R R

T TV x z a T y z V y z  
 

2.2.4. az I  

   
   ( , ) ( , )R R

T TV x z x a z a x a V y z      
 

3.  ,1x a  

3.1.  ,1y a  
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3.1.1. 0z   

 ( , ) ( , )R R

T TV x z a V y z   

3.1.2.  0,z a  

( , ) ( , )R R

T TV x z a V y z   

3.1.3.  ,1z a  

( , ) ( , ) ( , ) ( , )R R

T TV x z T x z T y z V y z    

3.1.4. az I  

( , ) ( , )R R

T TV x z a V y z   

4. ax I  

4.1. ay I  

 4.1.1. 0z    

        ( , ) 0 ( , )R R

T TV x z x a z a y a z a V y z           

4.1.2.  0,z a  

       ( , ) ( , )R R

T TV x z x a z a z y a z a V y z           

4.1.3.  ,1z a  

( , ) ( , )R R

T TV x z a V y z   

4.1.4. az I  

       ( , ) 0 ( , )R R

T TV x z x a z a y a z a V y z           

4.2.  ,1y a  

4.2.1. 0z    

   ( , ) 0 ( , )R R

T TV x z x a z a a V y z        

4.2.2.  0,z a  

   ( , ) ( , )R R

T TV x z x a z a z a V y z        

4.2.3.  ,1z a  

   
( , ) ( , ) ( , )R R

T TV x z a T y z V y z  
 

4.2.4. az I  

   ( , ) 0 ( , )R R

T TV x z x a z a a V y z        

 

Associativity: It can be shown that    ( , ), , ( , )R R R R

T T T TV V x y z V x V y z  for all , ,x y z L . By Theorem 2.3, We 

only need to consider the following cases: 

1. 0x  , 0y  , 0z   

             ( , ), (0, ) 0 ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V z V x V x V y z     

2.  0,x a ,  0,y a ,  0,z a  

       ( , ), ( ( , ), ) ( ( , ), )R R R

T T TV V x y z V R x y z R R x y z   

           ( , , ) ( , , ) , ( , )R R R

T T TR x R y z V x R y z V x V y z    

3.  ,1x a ,  ,1y a ,  ,1z a  



 

    
Zheng Xu., Sch J Phys Math Stat, May, 2022; 9(4): 69-75 

© 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          73 

 

 

             ( , ), ( ( , ), ) ( ( , ), )R R R

T T TV V x y z V T x y z T T x y z   

             ( , ( , )) ( , ( , )) , ( , )R R R

T T TT x T y z V x T y z V x V y z    

4. ax I , ay I , az I  

               ( , ), (0, ) 0 ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V z V x V x V y z     

5. 0x  , 0y  ,  0,z a  

   ( , ), (0, ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V z z V x z V x V y z     

6. 0x  ,  0,y a ,  0,z a  

   ( , ), ( , ) ( , ) ( , ( , )) , ( , )R R R R R R

T T T T T TV V x y z V y z R y z V x R y z V x V y z     

7. 0x  , 0y  ,  ,1z a  

   ( , ), (0, ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V z a V x a V x V y z     

8. 0x  ,  ,1y a ,  ,1z a  

   ( , ), ( , ) ( , ( , )) , ( , )R R R R R R

T T T T T TV V x y z V a z a V x T y z V x V y z     

9. 0x  , 0y  , az I  

   ( , ), (0, ) 0 ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V z V x V x V y z     

10. 0x  , ay I , az I  

   ( , ), ( , ) 0 ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V x z V x V x V y z     

11.  0,x a ,  0,y a ,  ,1z a  

   ( , ), ( ( , ), ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V R x y z a V x a V x V y z     

12.  0,x a ,  ,1y a ,  ,1z a  

   ( , ), ( , ) ( , ( , )) , ( , )R R R R R R

T T T T T TV V x y z V a z a V x T y z V x V y z     

13.  0,x a ,  0,y a , az I  

   ( , ), ( ( , ), ) ( , ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V R x y z R x y V x y V x V y z     

14.  0,x a , ay I , az I  

   ( , ), ( , ) ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V x z x V x V x V y z     

15.  ,1x a ,  ,1y a , az I  

   ( , ), ( ( , ), ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V T x y z a V x a V x V y z     

16.  ,1x a , ay I , az I  

   ( , ), ( , ) ( ,0) , ( , )R R R R R R

T T T T T TV V x y z V a z a V x V x V y z     

17. 0x  ,  0,y a ,  ,1z a  

   ( , ), ( , ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V y z a V x a V x V y z     

  ( , ) ( , ),R R R

T T TV a y V V x z y   

18. 0x  ,  0,y a , az I  
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   ( , ), ( , ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V y z y V x y V x V y z   
 

  (0, ) ( , ),R R R

T T TV y V V x z y   

19. 0x  ,  ,1y a , az I  

   ( , ), ( , ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V a z a V x a V x V y z   
 

          (0, ) ( , ),R R R

T T TV y V V x z y   

20.  0,x a ,  ,1y a , az I  

   ( , ), ( , ) ( , ) , ( , )R R R R R R

T T T T T TV V x y z V a z a V x a V x V y z   
 

 ( , ) ( , ),R R R

T T TV x y V V x z y   

Therefore, 
R

TV  is a nullnorm on L  with the zero element a . 

 

Necessity: Let 
R

TV  is a nullnorm on L  with the zero element a  and  0,x a a   for all 
ax I . Let  0,x a ， 0y  ，

az I ， ( , )R x y x y a   , then we get    ( , ), ( , )R R R

T T TV V x y z V x z x z a     and    , ( , ) ,R R R

T T TV x V y z V x z a  

   ,R x z a x z a a a      . We know that  x z a a   , so  ( , ),R R

T TV V x y z   , ( , )R R

T TV x V y z . This is 

contradictory to the associativity of nullnorm. Therefore, it is must be 0x a   for all ax I .  

 

Theorem 3.2. Let ( , ,0,1)L   be a bounded lattice, \{0,1}a L , S  is a t-conorm on [0, ]a , and F  is a t-subnorm 

on [ ,1]a .Then, the function 
2:F

SV L L  can be defined as: 

 

      

 

       

2

2

( , )                  ( , ) ,1

                      ( , ) 1 ,1 ,1 1

( , )                   ( , ) 0,

    ( , ) ,1 ,1

a                             otherwise

F

S

a a a a

F x y x y a

x y x y a a

V S x y x y a

x a y a x y a I I a I I

 

    



 


      


，



 

And it is nullnorm on L  with zero element a , if and 

only if “ 1x a   for all ax I ”. 

 

Proof. This proof is similar to the proof of theorem 3.1. 

 

Remark 3.11 The biggest difference between the 

construction methods of nullnorm proposed in this 

paper and the construction methods of nullnorm 

proposed in theorem 2.2 is that: We replace the 

triangular conorm (triangular norm) with the triangular 

subconorm (triangular subnorm), and the most 

important thing is that we give the necessary and 

sufficient condition for those construction methods. 

 

4. CONCLUSION 
In previous studies, nullnorms on bounded 

lattices have been defined and studied extensively. 

Moreover, the concrete construction of nullnorm on 

bounded lattices is still an active research field. 

 

In this paper, we consider the particularity of 

specific bounded lattices, and according to the concrete 

constructions of nullnorms form theorem 2.2, we 

present two concrete methods to construct nullnorms 

via triangular subconorms (triangular subnorms) and 

triangular norms (triangular conorms) on bounded 

lattices. In the following research, we will continue to 

find and use different aggregation operators to construct 

new nullnorms on bounded lattices, so as to make the 

structure of nullnorms on bounded lattices more 

complete. 
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